Displaying all 3 publications

Abstract:
Sort:
  1. Smith JW, Kerrison G
    Water Air Soil Pollut, 2013;224:1706.
    PMID: 24482545
    Sustainable remediation comprises soil and groundwater risk-management actions that are selected, designed, and operated to maximize net environmental, social, and economic benefit (while assuring protection of human health and safety). This paper describes a benchmarking exercise to comparatively assess potential differences in environmental management decision making resulting from application of different sustainability appraisal tools ranging from simple (qualitative) to more quantitative (multi-criteria and fully monetized cost-benefit analysis), as outlined in the SuRF-UK framework. The appraisal tools were used to rank remedial options for risk management of a subsurface petroleum release that occurred at a petrol filling station in central England. The remediation options were benchmarked using a consistent set of soil and groundwater data for each tier of sustainability appraisal. The ranking of remedial options was very similar in all three tiers, and an environmental management decision to select the most sustainable options at tier 1 would have been the same decision at tiers 2 and 3. The exercise showed that, for relatively simple remediation projects, a simple sustainability appraisal led to the same remediation option selection as more complex appraisal, and can be used to reliably inform environmental management decisions on other relatively simple land contamination projects.
  2. Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, et al.
    Water Air Soil Pollut, 2022;233(12):493.
    PMID: 36466935 DOI: 10.1007/s11270-022-05904-2
    The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
  3. Li X, Abdullah LC, Sobri S, Md Said MS, Hussain SA, Aun TP, et al.
    Water Air Soil Pollut, 2023;234(5):328.
    PMID: 37200574 DOI: 10.1007/s11270-023-06279-8
    Currently, air quality has become central to global environmental policymaking. As a typical mountain megacity in the Cheng-Yu region, the air pollution in Chongqing is unique and sensitive. This study aims to comprehensively investigate the long-term annual, seasonal, and monthly variation characteristics of six major pollutants and seven meteorological parameters. The emission distribution of major pollutants is also discussed. The relationship between pollutants and the multi-scale meteorological conditions was explored. The results indicate that particulate matter (PM), SO2 and NO2 showed a "U-shaped" variation, while O3 showed an "inverted U-shaped" seasonal variation. Industrial emissions accounted for 81.84%, 58% and 80.10% of the total SO2, NOx and dust pollution emissions, respectively. The correlation between PM2.5 and PM10 was strong (R = 0.98). In addition, PM only showed a significant negative correlation with O3. On the contrary, PM showed a significant positive correlation with other gaseous pollutants (SO2, NO2, CO). O3 is only negatively correlated with relative humidity and atmospheric pressure. These findings provide an accurate and effective countermeasure for the coordinated management of air pollution in Cheng-Yu region and the formulation of the regional carbon peaking roadmap. Furthermore, it can improve the prediction accuracy of air pollution under multi-scale meteorological factors, promote effective emission reduction paths and policies in the region, and provide references for related epidemiological research.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11270-023-06279-8.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links