Displaying all 8 publications

Abstract:
Sort:
  1. Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R
    World J Stem Cells, 2012 Jun 26;4(6):53-61.
    PMID: 22993662
    To explore the feasibility of placenta tissue as a reliable and efficient source for generating mesenchymal stem cells (MSC).
  2. Ooi YY, Rahmat Z, Jose S, Ramasamy R, Vidyadaran S
    World J Stem Cells, 2013 Jan 26;5(1):34-42.
    PMID: 23362438 DOI: 10.4252/wjsc.v5.i1.34
    To assess the capacity to isolate and expand mesenchymal stem cells (MSC) from bone marrow of CBA/Ca, ICR and Balb/c mice.
  3. Mohd Hilmi AB, Halim AS
    World J Stem Cells, 2015 Mar 26;7(2):428-36.
    PMID: 25815126 DOI: 10.4252/wjsc.v7.i2.428
    Tissue engineering essentially refers to technology for growing new human tissue and is distinct from regenerative medicine. Currently, pieces of skin are already being fabricated for clinical use and many other tissue types may be fabricated in the future. Tissue engineering was first defined in 1987 by the United States National Science Foundation which critically discussed the future targets of bioengineering research and its consequences. The principles of tissue engineering are to initiate cell cultures in vitro, grow them on scaffolds in situ and transplant the composite into a recipient in vivo. From the beginning, scaffolds have been necessary in tissue engineering applications. Regardless, the latest technology has redirected established approaches by omitting scaffolds. Currently, scientists from diverse research institutes are engineering skin without scaffolds. Due to their advantageous properties, stem cells have robustly transformed the tissue engineering field as part of an engineered bilayered skin substitute that will later be discussed in detail. Additionally, utilizing biomaterials or skin replacement products in skin tissue engineering as strategy to successfully direct cell proliferation and differentiation as well as to optimize the safety of handling during grafting is beneficial. This approach has also led to the cells' application in developing the novel skin substitute that will be briefly explained in this review.
  4. Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, et al.
    World J Stem Cells, 2020 Sep 26;12(9):938-951.
    PMID: 33033556 DOI: 10.4252/wjsc.v12.i9.938
    In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
  5. Wong CY
    World J Stem Cells, 2021 Jul 26;13(7):914-933.
    PMID: 34367484 DOI: 10.4252/wjsc.v13.i7.914
    Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients' quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.
  6. Sun YL, Shang LR, Liu RH, Li XY, Zhang SH, Ren YK, et al.
    World J Stem Cells, 2022 Jan 26;14(1):104-116.
    PMID: 35126831 DOI: 10.4252/wjsc.v14.i1.104
    BACKGROUND: Type 1 diabetes (T1D), a chronic metabolic and autoimmune disease, seriously endangers human health. In recent years, mesenchymal stem cell (MSC) transplantation has become an effective treatment for diabetes. Menstrual blood-derived endometrial stem cells (MenSC), a novel MSC type derived from the decidual endometrium during menstruation, are expected to become promising seeding cells for diabetes treatment because of their noninvasive collection procedure, high proliferation rate and high immunomodulation capacity.

    AIM: To comprehensively compare the effects of MenSC and umbilical cord-derived MSC (UcMSC) transplantation on T1D treatment, to further explore the potential mechanism of MSC-based therapies in T1D, and to provide support for the clinical application of MSC in diabetes treatment.

    METHODS: A conventional streptozotocin-induced T1D mouse model was established, and the effects of MenSC and UcMSC transplantation on their blood glucose and serum insulin levels were detected. The morphological and functional changes in the pancreas, liver, kidney, and spleen were analyzed by routine histological and immunohistochemical examinations. Changes in the serum cytokine levels in the model mice were assessed by protein arrays. The expression of target proteins related to pancreatic regeneration and apoptosis was examined by western blot.

    RESULTS: MenSC and UcMSC transplantation significantly improved the blood glucose and serum insulin levels in T1D model mice. Immunofluorescence analysis revealed that the numbers of insulin+ and CD31+ cells in the pancreas were significantly increased in MSC-treated mice compared with control mice. Subsequent western blot analysis also showed that vascular endothelial growth factor (VEGF), Bcl2, Bcl-xL and Proliferating cell nuclear antigen in pancreatic tissue was significantly upregulated in MSC-treated mice compared with control mice. Additionally, protein arrays indicated that MenSC and UcMSC transplantation significantly downregulated the serum levels of interferon γ and tumor necrosis factor α and upregulated the serum levels of interleukin-6 and VEGF in the model mice. Additionally, histological and immunohistochemical analyses revealed that MSC transplantation systematically improved the morphologies and functions of the liver, kidney, and spleen in T1D model mice.

    CONCLUSION: MenSC transplantation significantly improves the symptoms in T1D model mice and exerts protective effects on their main organs. Moreover, MSC-mediated angiogenesis, antiapoptotic effects and immunomodulation likely contribute to the above improvements. Thus, MenSC are expected to become promising seeding cells for clinical diabetes treatment due to their advantages mentioned above.

  7. Mohd Satar A, Othman FA, Tan SC
    World J Stem Cells, 2022 Dec 26;14(12):851-867.
    PMID: 36619694 DOI: 10.4252/wjsc.v14.i12.851
    BACKGROUND: Ischemic stroke is a condition in which an occluded blood vessel interrupts blood flow to the brain and causes irreversible neuronal cell death. Transplantation of regenerative stem cells has been proposed as a novel therapy to restore damaged neural circuitry after ischemic stroke attack. However, limitations such as low cell survival rates after transplantation remain significant challenges to stem cell-based therapy for ischemic stroke in the clinical setting. In order to enhance the therapeutic efficacy of transplanted stem cells, several biomaterials have been developed to provide a supportable cellular microenvironment or functional modification on the stem cells to optimize their reparative roles in injured tissues or organs.

    AIM: To discuss state-of-the-art functional biomaterials that could enhance the therapeutic potential of stem cell-based treatment for ischemic stroke and provide detailed insights into the mechanisms underlying these biomaterial approaches.

    METHODS: The PubMed, Science Direct and Scopus literature databases were searched using the keywords of "biomaterial" and "ischemic stroke". All topically-relevant articles were then screened to identify those with focused relevance to in vivo, in vitro and clinical studies related to "stem cells" OR "progenitor cells" OR "undifferentiated cells" published in English during the years of 2011 to 2022. The systematic search was conducted up to September 30, 2022.

    RESULTS: A total of 19 articles matched all the inclusion criteria. The data contained within this collection of papers comprehensively represented 19 types of biomaterials applied on seven different types of stem/progenitor cells, namely mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, neural progenitor cells, endothelial progenitor cells, neuroepithelial progenitor cells, and neuroblasts. The potential major benefits gained from the application of biomaterials in stem cell-based therapy were noted as induction of structural and functional modifications, increased stem cell retention rate in the hostile ischemic microenvironment, and promoting the secretion of important cytokines for reparative mechanisms.

    CONCLUSION: Biomaterials have a relatively high potential for enhancing stem cell therapy. Nonetheless, there is a scarcity of evidence from human clinical studies for the efficacy of this bioengineered cell therapy, highlighting that it is still too early to draw a definitive conclusion on efficacy and safety for patient usage. Future in-depth clinical investigations are necessary to realize translation of this therapy into a more conscientious and judicious evidence-based therapy for clinical application.

  8. Zhou QZ, Feng XL, Jia XF, Mohd Nor NHB, Harun MHB, Feng DX, et al.
    World J Stem Cells, 2023 Jun 26;15(6):607-616.
    PMID: 37424948 DOI: 10.4252/wjsc.v15.i6.607
    BACKGROUND: Timing of passaging, passage number, passaging approaches and methods for cell identification are critical factors influencing the quality of neural stem cells (NSCs) culture. How to effectively culture and identify NSCs is a continuous interest in NSCs study while these factors are comprehensively considered.

    AIM: To establish a simplified and efficient method for culture and identification of neonatal rat brain-derived NSCs.

    METHODS: First, curved tip operating scissors were used to dissect brain tissues from new born rats (2 to 3 d) and the brain tissues were cut into approximately 1 mm3 sections. Filter the single cell suspension through a nylon mesh (200-mesh) and culture the sections in suspensions. Passaging was conducted with TrypLTM Express combined with mechanical tapping and pipetting techniques. Second, identify the 5th generation of passaged NSCs as well as the revived NSCs from cryopreservation. BrdU incorporation method was used to detect self-renew and proliferation capabilities of cells. Different NSCs specific antibodies (anti-nestin, NF200, NSE and GFAP antibodies) were used to identify NSCs specific surface markers and muti-differentiation capabilities by immunofluorescence staining.

    RESULTS: Brain derived cells from newborn rats (2 to 3 d) proliferate and aggregate into spherical-shaped clusters with sustained continuous and stable passaging. When BrdU was incorporated into the 5th generation of passaged cells, positive BrdU cells and nestin cells were observed by immunofluorescence staining. After induction of dissociation using 5% fetal bovine serum, positive NF200, NSE and GFAP cells were observed by immunofluorescence staining.

    CONCLUSION: This is a simplified and efficient method for neonatal rat brain-derived neural stem cell culture and identification.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links