Displaying all 5 publications

Abstract:
Sort:
  1. Li YQ, Ghafari M, Holbrook AJ, Boonen I, Amor N, Catalano S, et al.
    bioRxiv, 2023 Jun 30.
    PMID: 37425679 DOI: 10.1101/2023.06.30.547218
    In the search for natural reservoirs of hepatitis C virus (HCV), a broad diversity of non-human viruses within the Hepacivirus genus has been uncovered. However, the evolutionary dynamics that shaped the diversity and timescale of hepaciviruses evolution remain elusive. To gain further insights into the origins and evolution of this genus, we screened a large dataset of wild mammal samples (n = 1,672) from Africa and Asia, and generated 34 full-length hepacivirus genomes. Phylogenetic analysis of these data together with publicly available genomes emphasizes the importance of rodents as hepacivirus hosts and we identify 13 rodent species and 3 rodent genera (in Cricetidae and Muridae families) as novel hosts of hepaciviruses. Through co-phylogenetic analyses, we demonstrate that hepacivirus diversity has been affected by cross-species transmission events against the backdrop of detectable signal of virus-host co-divergence in the deep evolutionary history. Using a Bayesian phylogenetic multidimensional scaling approach, we explore the extent to which host relatedness and geographic distances have structured present-day hepacivirus diversity. Our results provide evidence for a substantial structuring of mammalian hepacivirus diversity by host as well as geography, with a somewhat more irregular diffusion process in geographic space. Finally, using a mechanistic model that accounts for substitution saturation, we provide the first formal estimates of the timescale of hepacivirus evolution and estimate the origin of the genus to be about 22 million years ago. Our results offer a comprehensive overview of the micro- and macroevolutionary processes that have shaped hepacivirus diversity and enhance our understanding of the long-term evolution of the Hepacivirus genus.
  2. Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, et al.
    bioRxiv, 2023 Jun 05.
    PMID: 37333120 DOI: 10.1101/2023.06.01.543241
    Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
  3. Sargsian S, Lejeune A, Ercelen D, Jin WB, Varghese A, Loke P, et al.
    bioRxiv, 2023 Jun 07.
    PMID: 37333296 DOI: 10.1101/2023.06.05.543751
    Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.
  4. Tapaopong P, Chainarin S, Mala A, Rannarong A, Kangkasikorn N, Kusolsuk T, et al.
    bioRxiv, 2024 Jun 27.
    PMID: 38979329 DOI: 10.1101/2024.06.27.600943
    Recent reports from Thailand reveal a substantial surge in Plasmodium knowlesi cases over the past decade, with a more than eightfold increase in incidence by 2023 compared to 2018. This study investigates temporal changes in genetic polymorphism associated with the escalating transmission of P. knowlesi malaria in Thailand over the past two decades. Twenty-five P. knowlesi samples collected in 2018-2023 were sequenced for the 42-kDa region of pkmsp1 and compared with 24 samples collected in 2000-2009, focusing on nucleotide diversity, natural selection, recombination rate, and population differentiation. Seven unique haplotypes were identified in recent samples, compared to 15 in earlier samples. Nucleotide and haplotype diversities were lower in recent samples (π = 0.016, Hd = 0.817) than in earlier samples (π = 0.018, Hd = 0.942). Significantly higher synonymous substitution rates were observed in both sample sets (dS - dN = 2.77 and 2.43, p < 0.05), indicating purifying selection and reduced genetic diversity over time. Additionally, 8 out of 17 mutation points were located on B-cell epitopes, suggesting an adaptive response by the parasites to evade immune recognition. Population differentiation analysis using the fixation index (Fst) revealed high genetic differentiation between parasite populations in central and southern Thailand or Malaysia. Conversely, the relatively lower Fst value between southern Thailand and Malaysia suggests a closer genetic relationship, possibly reflecting historical gene flow. In conclusion, our findings highlight a decline in genetic diversity and evidence of purifying selection associated with the recently increased incidence of P. knowlesi malaria in Thailand. The minor genetic differentiation between P. knowlesi populations from southern Thailand and Malaysia suggests a shared recent ancestry of these parasites and underscores the need for coordinated efforts between the two countries for the elimination of P. knowlesi.
  5. Dobhal S, Hugouvieux-Cotte-Pattat N, Arizala D, Sari GB, Chuang SC, Alvarez AM, et al.
    bioRxiv, 2024 Oct 30.
    PMID: 39554176 DOI: 10.1101/2024.10.29.620964
    Recently, species clustering within Dickeya zeae has been identified as complex, encompassing validly published names, including D. oryzae and D. parazeae, with some strains potentially delineating new species. In this study, genomes of strains isolated from a bacterial heart rot outbreak in pineapple (Ananas comosus var. comosus) on Oahu, Hawaii, along with two strains from pineapple in Malaysia, were sequenced. Orthologous average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the sequenced genomes ranged from 98.93-99.9% and 91.8-99.9%, respectively, supporting the classification of seven strains within the same species. Comparisons of ANI and dDDH values between these seven strains and type strains of D. zeae, D. parazeae, and D. oryzae ranged from 94.4-95.9% and 57.2-66.5%, respectively. These values fall below the proposed boundaries for new species designation, supporting the delineation of a novel species. Phylogenetic analyses, including 16S rRNA, gapA, multi-locus sequence analysis (MLSA) of 10 housekeeping genes, whole-genome, and pangenome analyses, were concordant and revealed a distinct monophyletic clade, separating these strains from other members of the D. zeae complex, with D. oryzae as the closest relative. Notably, a nitrogen fixation gene cluster comprising 28 genes, similar to the Klebsiella spp. nitrogenase gene cluster, was found in the genome of the seven pineapple strains. Based on polyphasic approaches, including ANI, dDDH, biochemical, physiological, and phylogenomic analyses, we propose the reclassification in a new species of the five pineapple strains from Hawaii A5391, A5410T, A5611, A6136, and A6137, together with the two pineapple strains from Malaysia CFBP 1272 and CFBP 1278, previously classified as D. zeae. We propose the name Dickeya ananae sp. nov. for this taxon, represented by the type strain A5410T (= ICMP 25020T = LMG 33197T).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links