An electrochemical latent redox probe, SAF 5 was designed, synthesized and characterized. A rapid and sensitive solution-based assay was demonstrated for salicylate hydroxylase (SHL). In presence of NADH at aerobic conditions, SHL catalyzed the decarboxylative hydroxylation of SAF and released a redox reporter amino ferrocene (AF 6). The release of AF 6 was monitored at interference free potential region (-50 mV vs. Ag|AgCl) using differential pulse voltammetry as signal read-out. The current signal generated by this process is highly specific, and insensitive to other biological interfering compounds. Next, the SAF incorporated SHL assay was extended to fabricate immobilization-free biosensors for rapid sensing of salicylic acid (SA) and β-hydroxybutyrate (β-HB) in whole blood. The described method rapidly detects SA in a linear range of 35-560 μM with detection limit of 5.0 μM. For β-HB determination, the linear range was 10-600 μM and detection limit was 2.0 μM. Besides, the assay protocols are simple, fast, reliable, selective, sensitive and advantageous over existing methods. The whole blood assay did not required cumbersome steps such as, enzyme immobilization, pre-treatments and holds great practical potential in clinical diagnosis.
The first objective of this study was to investigate the relationship between concentrations of beta-hydroxybutyrate (BHBA) in milk and blood to assess the reliability of the BHBA concentrations in milk measured by a semi quantitative keto-test paper to detect subclinical ketosis (SCK) in 50 fresh high-producing Iranian Holstein cows in Golestan Province, Iran. The second objective was the effects of SCK on milk yield and components. Concentrations of nonesterified fatty acids (NEFA) and BHBA were analyzed quantitatively in blood plasma and commercial keto-test paper was used for semi quantitative determination of BHBA concentration in milk. Milk yield was measured until 60 d after calving but milk compositions were measured until 30 d after calving. The mean plasma BHBA, milk BHBA, plasma NEFA, milk yield, milk fat percentage and milk fat: protein ratio were 1,234 micromol/L, 145 micromol/L, 0.482 mEq/L, 29.5 kg, 3.9% and 1.4, respectively. Fifty eight percent of the cows had SCK during the first month of lactation. High correlation coefficients were observed between blood BHBA and blood NEFA, and between blood and milk BHBA. The milk yield of cattle with SCK decreased (P < 0.01) but the fat percentage and milk fat: protein ratio increased (P < 0.01). The commercial keto-test paper used had a low false positive result at a cut-off point of 200 fmol of BHBA/L of milk. The results showed that the best time to assess SCK using the commercial keto-test paper was d 10, 14 and 17 after calving.