Displaying all 2 publications

Abstract:
Sort:
  1. Srichan W, Thasanasuwan W, Kijboonchoo K, Rojroongwasinkul N, Wimonpeerapattana W, Khouw I, et al.
    Eur J Clin Nutr, 2016 08;70(8):894-7.
    PMID: 26508460 DOI: 10.1038/ejcn.2015.180
    BACKGROUND/OBJECTIVES: Quantitative ultrasound (QUS) is used to measure bone quality and is known to be safe, radiation free and relatively inexpensive compared with dual-energy X-ray absorptiometry (DXA) that is considered the gold standard for bone status assessments. However, there is no consensus regarding the validity of QUS for measuring bone status. The aim of this study was to compare QUS and DXA in assessing bone status in Thai children.

    SUBJECTS/METHODS: A total of 181 Thai children (90 boys and 91 girls) aged 6 to 12 years were recruited. Bone status was measured by two different techniques in terms of the speed of sound (SOS) using QUS and bone mineral density (BMD) using DXA. Calcium intake was assessed by 24 h diet recall. Pearson's correlation, κ-statistic and Bland and Altman analysis were used to assess the agreement between the methods.

    RESULTS: There was no correlation between the two different techniques. Mean difference (s.d.) of the Z-scores of BMD and SOS was -0.61 (1.27) that was different from zero (P<0.05). Tertiles of Z-scores of BMD and QUS showed low agreement (κ 0.022, P=0.677) and the limits of agreement in Bland and Altman statistics were wide.

    CONCLUSIONS: Although QUS is easy and convenient to use, the SOS measurements at the radius seem not appropriate for assessing bone quality status.

    Matched MeSH terms: Absorptiometry, Photon/statistics & numerical data*
  2. Lai EL, Huang WN, Chen HH, Chen JP, Chen DY, Hsieh TY, et al.
    Arch Osteoporos, 2020 03 27;15(1):54.
    PMID: 32221755 DOI: 10.1007/s11657-020-00726-3
    PURPOSE: Recently, trabecular bone score (TBS) has emerged as an important supplementary assessment tool in osteoporosis diagnosis and management. The high incidence of fragility fracture within the non-osteoporotic range of bone mineral density (BMD), among systemic lupus erythematosus (SLE) patients, highlights the crucial role of bone microarchitecture in osteoporosis. This study aimed to evaluate whether TBS identified existing vertebral fractures (VF) more accurately than BMD in SLE patients.

    METHODS: This study enrolled 147 SLE patients from the Asia Pacific Lupus Collaboration (APLC) cohort, who had BMD and TBS assessed from January 2018 until December 2018. Twenty-eight patients sustaining VF and risk factors associated with increased fracture occurrence were evaluated. Independent risk factors and diagnostic accuracy of VF were analyzed by logistic regression and ROC curve, respectively.

    RESULT: The prevalence of vertebral fracture among SLE patients was 19%. BMD, T-score, TBS, and TBS T-score were significantly lower in the vertebral fracture group. TBS exhibited higher positive predictive value and negative predictive value than L spine and left femur BMD for vertebral fractures. Moreover, TBS had a higher diagnostic accuracy than densitometric measurements (area under curve, 0.811 vs. 0.737 and 0.605).

    CONCLUSION: Degraded microarchitecture by TBS was associated with prevalent vertebral fractures in SLE patients. Our result suggests that TBS can be a complementary tool for assessing vertebral fracture prevalence in this population.

    Matched MeSH terms: Absorptiometry, Photon/statistics & numerical data*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links