Displaying all 6 publications

Abstract:
Sort:
  1. Hanifah AL, Awang SH, Ho TM, Abidin SZ, Omar MH
    Asian Pac J Trop Biomed, 2011 Oct;1(5):365-9.
    PMID: 23569794 DOI: 10.1016/S2221-1691(11)60081-6
    To examine the acaricidal effects of the essential oil of Cymbopogon citratus leaf extract (lemongrass) and ethanolic Azadirachta indica leaf extract (neem) against house dust mites Dermatophagoides farinae (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus).
    Matched MeSH terms: Acaricides/pharmacology*; Acaricides/chemistry
  2. El-Seedi HR, Azeem M, Khalil NS, Sakr HH, Khalifa SAM, Awang K, et al.
    Exp Appl Acarol, 2017 Sep;73(1):139-157.
    PMID: 28864886 DOI: 10.1007/s10493-017-0165-3
    Due to the role of Ixodes ricinus (L.) (Acari: Ixodidae) in the transmission of many serious pathogens, personal protection against bites of this tick is essential. In the present study the essential oils from 11 aromatic Egyptian plants were isolated and their repellent activity against I. ricinus nymphs was evaluated Three oils (i.e. Conyza dioscoridis L., Artemisia herba-alba Asso and Calendula officinalis L.) elicited high repellent activity in vitro of 94, 84.2 and 82%, respectively. The most active essential oil (C. dioscoridis) was applied in the field at a concentration of 6.5 µg/cm2 and elicited a significant repellent activity against I. ricinus nymphs by 61.1%. The most repellent plants C. dioscoridis, C. officinalis and A. herba-alba yielded essential oils by 0.17, 0.11 and 0.14%, respectively. These oils were further investigated using gas chromatography-mass spectrometry analysis. α-Cadinol (10.7%) and hexadecanoic acid (10.5%) were the major components of C. dioscoridis whereas in C. officinalis, α-cadinol (21.2%) and carvone (18.2%) were major components. Artemisia herba-alba contained piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%) and hexadecanoic acid (6.9%). Essential oils of these three plants have a potential to be used for personal protection against tick bites.
    Matched MeSH terms: Acaricides*
  3. Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, et al.
    Exp Appl Acarol, 2023 Jun;90(1-2):83-98.
    PMID: 37285111 DOI: 10.1007/s10493-023-00804-4
    Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
    Matched MeSH terms: Acaricides*
  4. Shezryna S, Anisah N, Saleh I, Syamsa RA
    Trop Biomed, 2020 Jun 01;37(2):433-442.
    PMID: 33612812
    Rhipicephalus (Boophilus) microplus serves as an important ectoparasite of livestock and a vector of several pathogens resulting in diseases, subsequently affecting the agricultural field as well as the economy. The extensive use of synthetic acaricides is known to cause resistance over time and therefore a much safer, effective and environmentally friendly alternative to overcome tick infestation should be implemented. Larval immersion tests (LIT) were done to evaluate the effects of Citrus hystrix (Family: Rutaceae) and Cymbopogon citratus (Family: Poaceae) essential oils (EOs) for their individual and combined (1:1) acaricidal activity against the cattle tick. Results showed that LC50 and LC90 values in 24 and 48 hours for Cit. hystrix EO were 11.98% and 24.84%, and 10.95% and 21.71% respectively. LC50 and LC90 values for Cym. citratus EO were 1.21% and 6.28%, and 1.05% and 6.12% respectively. The mixture of EOs from two plants in 1:1 ratio (Cit. hystrix 50%: Cym. citratus 50%) was found to exhibit antagonistic effect (synergistic factor < 1). The 24 hours and 48 hours LC50 and LC90 values for combined EOs were 1.52% and 2.84%, and 1.50% and 2.76% respectively. Individual and combined essential oils were subjected to qualitative analysis using gas chromatography-mass spectrometry (GC-MS) to screen the chemical components present in EOs. Our results showed that the combination of Cit. hystrix and Cym. citratus at 1:1 ratio resulted in an antagonistic effect and the use of Cym. citratus alone is more toxic to R. (B.) microplus, making it a better alternative to chemical based acaricide.
    Matched MeSH terms: Acaricides/pharmacology*
  5. Benelli G, Maggi F, Romano D, Stefanini C, Vaseeharan B, Kumar S, et al.
    Ticks Tick Borne Dis, 2017 10;8(6):821-826.
    PMID: 28865955 DOI: 10.1016/j.ttbdis.2017.08.004
    Ticks serve as vectors of a wide range of infectious agents deleterious to humans and animals. Tick bite prevention is based to a large extent on the use of chemical repellents and acaricides. However, development of resistance in targeted ticks, environmental pollution, and contamination of livestock meat and milk are major concerns. Recently, metal, metal oxide and carbon nanoparticles, particularly those obtained through green fabrication routes, were found to be highly effective against a wide array of arthropod pests and vectors. We summarize current knowledge on the toxicity of nanoparticles against tick vectors of medical and veterinary importance. We also discuss the toxicity of products from botanical- and bacterial-based as well as classic chemical nanosynthesis routes, showing differences in bioactivity against ticks based on the products used for the fabrication of nanoparticles. Further research is needed, to validate the efficacy of nanoparticle-based acaricides in the field and clarify mechanisms of action of nanoparticles against ticks. From a technical point of view, the literature analyzed here showed little standardization of size and weight of tested ticks, a lack of uniform methods to assess toxicity and concerns related to data analysis. Finally, an important challenge for future research is the need for ecotoxicology studies to evaluate potential negative effects on non-target organisms and site contamination arising from nanoparticle-based treatments in close proximity of livestock and farmers.
    Matched MeSH terms: Acaricides/pharmacology*
  6. Carran M, Shaw IC
    N Z Med J, 2012;125(1358):52-63.
    PMID: 22864157
    It is well known that the endocrine-disrupting chemical (EDC) dibutylphthalate (DBP) inhibits testosterone synthesis and can lead to feminisation in male laboratory animals. Moreover, it has long been speculated that human exposure would result in the similar effects, but this is difficult to study because specific human exposure cohorts are rare. We report increases in the incidences of hypospadias (p<0.05), cryptorchidism (p<0.05) and breast cancer (p<0.05) in the children of New Zealand soldiers who served in Malaya (1948-1960) and were exposed to DBP applied daily to their clothing as an acaricide to prevent tick-transmitted bush typhus. In addition, we modelled absorption of DBP from the soldiers' clothing and using published data for skin absorption, and calculated a large theoretical absorbed dose of 64 mg/kg body weight/day which is similar to DBP's lowest observed adverse effect level (LOAEL) of 50 mg/kg body weight/day and thus indicates a biological effect is possible. This is the first report of a multigenerational developmental effect following DBP exposure in human males.
    Matched MeSH terms: Acaricides/adverse effects*; Acaricides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links