Displaying all 3 publications

Abstract:
Sort:
  1. Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R
    Molecules, 2014 Apr 15;19(4):4624-34.
    PMID: 24739926 DOI: 10.3390/molecules19044624
    Silver nanoparticles display unique physical and biological properties which have attracted intensive research interest because of their important medical applications. In this study silver nanoparticles (Ab.Ag-NPs) were synthesized for biomedical applications using a completely green biosynthetic method using Achillea biebersteinii flowers extract. The structure and properties of Ab.Ag-NPs were investigated using UV-visible spectroscopic techniques, transmission electron microscopy (TEM), zeta potential and energy dispersive X-ray spectrometers (EDS). The UV-visible spectroscopic analysis showed the absorbance peak at 460 nm, which indicates the synthesis of silver nanoparticles. The average particle diameter as determined by TEM was found to be 12±2 nm. The zeta potential analysis indicated that Ab.Ag-NPs have good stability EDX analysis also exhibits presentation of silver element. As angiogenesis is an important phenomenon and as growth factors imbalance in this process causes the acceleration of several diseases including cancer, the anti-angiogenic properties of Ab.Ag-NPs were evaluated using the rat aortic ring model. The results showed that Ab.Ag-NPs (200 μg/mL) lead to a 50% reduction in the length and number of vessel-like structures. The synthesized silver nanoparticles from the Achillea biebersteinii flowers extract, which do not involve any harmful chemicals were well-dispersed and stabilized through this green method and showed potential therapeutic benefits against angiogenesis.
    Matched MeSH terms: Achillea/chemistry*
  2. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R
    Molecules, 2015 Feb 05;20(2):2693-706.
    PMID: 25665064 DOI: 10.3390/molecules20022693
    Silver nanoparticles (Ag-NPs), the most popular nanoparticles, possess unique properties. Achillea biebersteinii is a plant of the Asteraceae family rich in active antitumor components. The aim of this research was the characterization and investigation of the cytotoxic properties of Ag-NPs synthesized using A. biebersteinii flower extract, on a human breast cancer cell line. The Ag-NPs were synthesized after approximately 180 min of reaction at 40 °C, then they were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The anti-apoptosis effect of Ag-NPs on the MCF-7 cell line was investigated by MTT assay, DAPI and acridine orange staining and caspase activity. The transcriptional expression of bax, bcl-2, caspase-3, -8 and -9 were also evaluated by RT-PCR. The TEM images revealed that the Ag-NPs morphology had a different shape. The DLS indicated that the average hydrodynamic diameter of the biosynthesized Ag-NPs was around 12 nm. By UV-visible spectroscopy the strongest absorbance peak was observed at 460 nm. The FTIR results also showed interaction between the plant extract and Ag-NPs due to the similarity in the peak patterns. The EDS results showed that Ag-NPs display an absorption peak at 3 keV, indicating the presence of the element silver. The Ag-NPs caused a dose-dependent decrease in cell viability, fragmentation in nucleic acid, inhibited the proliferation and induction of apoptosis on MCF-7 by suppressing specific cell cycle genes, and simulation programmed cell dead genes. Further investigation is required to establish the potential of this novel and promising approach in cancer therapy.
    Matched MeSH terms: Achillea/chemistry*
  3. Boyko OO, Brygadyrenko VV
    Trop Biomed, 2021 Jun 01;38(2):85-93.
    PMID: 33973578 DOI: 10.47665/tb.38.2.046
    This research was undertaken to evaluate the nematicidal activity of various concentrations of aqueous tinctures of 80 plant species towards L1-2 of S. papillosus. For the experiment with larvae of S. papillosus, there were used 0.19%, 0.75% and 3.00% aqueous tinctures of plants. Out of 80 tested species, nematicidal activity against L1-2 of S. papillosus was displayed by 20 plants. The greatest activity (LC50 = 0.060-0.069%) towards larvae of S. papillosus was exerted by Teucrium polium, Achillea millefolium, Genista tinctoria and Ulmus laevis. Less expressed nematicidal activity (LC50 = 0.070-0.079%) was recorded for Thalictrum minus, Stachys recta, Falcaria vulgaris, Lavatera thuringiaca. Even lower effect (LC50 = 0.080-0.089%) was shown by aqueous tinctures of Mentha × piperita, Achillea millefolium, Salvia nutans, Eryngium campestre and Cerasus fruticosa. The following plants could be arranged in declining order of effectiveness of nematicidal activity (LC50 = 0.090-0.165%) Malus sylvestris, Tragopogon orientalis, Erigeron annuus, Grindelia squarrosa, Urtica dioica, Daucus carota, Medicago sativa, Carduus acanthoides, Ulmus minor and Hieracium umbellatum. A far weaker effect on the nematodes was displayed by Bromopsis inermis and Tragopogon podolicus. Aqueous tinctures of 60 other studied species of plants exhibited low nematicidal activity in 3.00% aqueous tincture, while in 0.19% and 0.75% aqueous tinctures, no nematicidal activity was seen. The results of the research suggest that in the conditions of natural ecosystems, some species of plants of the Apiaceae, Asteraceae, Fabaceae, Lamiaceae, Malvaceae, Rosaceae, Ulmaceae and Urticaceae families could reduce vitality of free-living L1-2 larvae of S. papillosus.
    Matched MeSH terms: Achillea
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links