Displaying all 4 publications

Abstract:
Sort:
  1. Ng PY, Chang IS, Koh RY, Chye SM
    Metab Brain Dis, 2020 10;35(7):1049-1066.
    PMID: 32632666 DOI: 10.1007/s11011-020-00591-6
    Alzheimer's disease (AD) has been a worldwide concern for many years now. This is due to the fact that AD is an irreversible and progressive neurodegenerative disease that affects quality of life. Failure of some Phase II/III clinical trials in AD targeting accumulation of β-amyloid in the brain has led to an increase in interest in studying alternative treatments against tubulin-associated unit (Tau) pathology. These alternative treatments include active and passive immunisation. Based on numerous studies, Tau is reported as a potential immunotherapeutic target for tauopathy-related diseases including AD. Accumulation and aggregation of hyperphosphorylated Tau as neuropil threads and neurofibrillary tangles (NFT) are pathological hallmarks of AD. Both active and passive immunisation targeting Tau protein have shown the capabilities to decrease or prevent Tau pathology and improve either motor or cognitive impairment in various animal models. In this review, we summarise recent advances in active and passive immunisation targeting pathological Tau protein, and will discuss with data obtained from both animal and human trials. Together, we give a brief overview about problems being encountered in these immunotherapies.
    Matched MeSH terms: Alzheimer Disease/immunology
  2. Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY
    Life Sci, 2021 Jul 01;276:119129.
    PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129
    Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
    Matched MeSH terms: Alzheimer Disease/immunology
  3. Yahaya MAF, Zolkiffly SZI, Moklas MAM, Hamid HA, Stanslas J, Zainol M, et al.
    J Immunol Res, 2020;2020:9469210.
    PMID: 32258178 DOI: 10.1155/2020/9469210
    Alzheimer's disease (AD) has been clinically characterized by a progressive degeneration of neurons which resulted in a gradual and irreversible cognitive impairment. The accumulation of Aβ and τ proteins in the brain contribute to the severity of the disease. Recently, vitexin compound has been the talk amongst researchers due to its pharmacological properties as anti-inflammation and anti-AD. However, the epigenetic mechanism of the compound in regulating the neuroinflammation activity is yet to be fully elucidated. Hence, this review discusses the potential of vitexin compound to have the pharmacoepigenetic property in regulating the neuroinflammation activity in relation to AD. It is with hope that the review would unveil the potential of vitexin as the candidate in treating AD.
    Matched MeSH terms: Alzheimer Disease/immunology*
  4. Ling TS, Chandrasegaran S, Xuan LZ, Suan TL, Elaine E, Nathan DV, et al.
    Biomed Res Int, 2021;2021:5550938.
    PMID: 34285915 DOI: 10.1155/2021/5550938
    Alzheimer's disease is a neurodegenerative disorder that is caused by the accumulation of beta-amyloid plaques in the brain. Currently, there is no definitive cure available to treat Alzheimer's disease. The available medication in the market has the ability to only slow down its progression. However, nanotechnology has shown its superiority that can be applied for medical usage and it has a great potential in the therapy of Alzheimer's disease, specifically in the disease diagnosis and providing an alternative approach to treat Alzheimer's disease. This is done by increasing the efficiency of drug delivery by penetrating and overcoming the blood-brain barrier. Having said that, there are limitations that need to be further investigated and researched in order to minimize the adverse effects and potential toxicity and to improve drug bioavailability. The recent advances in the treatment of Alzheimer's disease using nanotechnology include the regeneration of stem cells, nanomedicine, and neuroprotection. In this review, we will discuss the advancement of nanotechnology which helps in the diagnosis and treatment of neurodegenerative disorders such as Alzheimer's disease as well as its challenges.
    Matched MeSH terms: Alzheimer Disease/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links