Displaying all 6 publications

Abstract:
Sort:
  1. Faridnia F, Hussin AS, Saari N, Mustafa S, Yee LY, Manap MY
    Benef Microbes, 2010 Jun;1(2):149-54.
    PMID: 21831754 DOI: 10.3920/BM2009.0035
    Consumption of probiotics has been associated with decreased risk of colon cancer and reported to have antimutagenic/ anti-carcinogenic properties. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines (HCAs), to the bacteria. Therefore, the objective of this study was to examine the binding capacity of bifidobacterial strains of human origin on mutagenic heterocyclic amines which are suspected to play a role in human cancers. In vitro binding of the mutagens Trp-p-2, IQ, MeIQx, 7,8DiMeIQx and PhIP by three bacterial strains in two media of different pH was analysed using high performance liquid chromatography. Bifidobacterium pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by Bifidobacterium longum, and Escherichia coli. pH affects binding capacity; the highest binding was obtained at pH 6.8. Gram-positive tested strains were found to be consistently more effective than the gram-negative strain. There were significant decreases in the amount of HCAs in the presence of different cell concentrations of B. pseudocatenulatum G4; the highest decrease was detected at the concentration of 10(10) cfu/ml. The results showed that HCAs were able to bind with all bacterial strains tested in vitro, thus it may be possible to decrease their absorption by human intestine and increase their elimination via faeces.
    Matched MeSH terms: Amines/metabolism*
  2. Alam Shah S, Selamat J, Haque Akanda MJ, Sanny M, Khatib A
    PMID: 29448903 DOI: 10.1080/19440049.2018.1440639
    The objective of the study was to determine the effect of different types of soy sauce and marinating time on the formation of heterocyclic amines (HCAs) in roasted chicken. Chicken breast samples were marinated with sweet, salty, light and dark soy sauce at 0, 3, 6 and 12 h (control treatment was the chicken without marinade). The concentrations of free amino acids, sugars and creatinine were determined before roasting while HCA concentrations were determined after roasting. All types of soy sauce significantly increased (p ≤ 0.05) the concentration of HCAs in roasted chicken with increasing marinating time. The highest increment of total concentration of HCAs was found in samples marinated with light soy sauce (887%) followed by dark (375%), salty (193%) and sweet (169%) at 12 h. PhIP (2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine) showed a substantial reduction in samples only momentarily marinated with sweet, salty and dark soy sauce (0 h). Free amino acids were found to be more strongly correlated with the formation of HCAs than reducing sugars or creatinine.
    Matched MeSH terms: Amines/metabolism
  3. Halim AA, Szita N, Baganz F
    J Biotechnol, 2013 Dec;168(4):567-75.
    PMID: 24055435 DOI: 10.1016/j.jbiotec.2013.09.001
    The concept of de novo metabolic engineering through novel synthetic pathways offers new directions for multi-step enzymatic synthesis of complex molecules. This has been complemented by recent progress in performing enzymatic reactions using immobilized enzyme microreactors (IEMR). This work is concerned with the construction of de novo designed enzyme pathways in a microreactor synthesizing chiral molecules. An interesting compound, commonly used as the building block in several pharmaceutical syntheses, is a single diastereoisomer of 2-amino-1,3,4-butanetriol (ABT). This chiral amino alcohol can be synthesized from simple achiral substrates using two enzymes, transketolase (TK) and transaminase (TAm). Here we describe the development of an IEMR using His6-tagged TK and TAm immobilized onto Ni-NTA agarose beads and packed into tubes to enable multi-step enzyme reactions. The kinetic parameters of both enzymes were first determined using single IEMRs evaluated by a kinetic model developed for packed bed reactors. The Km(app) for both enzymes appeared to be flow rate dependent, while the turnover number kcat was reduced 3 fold compared to solution-phase TK and TAm reactions. For the multi-step enzyme reaction, single IEMRs were cascaded in series, whereby the first enzyme, TK, catalyzed a model reaction of lithium-hydroxypyruvate (HPA) and glycolaldehyde (GA) to L-erythrulose (ERY), and the second unit of the IEMR with immobilized TAm converted ERY into ABT using (S)-α-methylbenzylamine (MBA) as amine donor. With initial 60mM (HPA and GA each) and 6mM (MBA) substrate concentration mixture, the coupled reaction reached approximately 83% conversion in 20 min at the lowest flow rate. The ability to synthesize a chiral pharmaceutical intermediate, ABT in relatively short time proves this IEMR system as a powerful tool for construction and evaluation of de novo pathways as well as for determination of enzyme kinetics.
    Matched MeSH terms: Amines/metabolism
  4. Zaman MZ, Abu Bakar F, Jinap S, Bakar J
    Int J Food Microbiol, 2011 Jan 31;145(1):84-91.
    PMID: 21183239 DOI: 10.1016/j.ijfoodmicro.2010.11.031
    Bacteria with amine oxidase activity have become a particular interest to reduce biogenic amines concentration in food products such as meat and fish sausages. However, little information is available regarding the application of these bacteria in fish sauce. Hence, our study was aimed to investigate the effect of such starter cultures in reducing biogenic amines accumulation during fish sauce fermentation. Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05 isolated from fish sauce which possess amine oxidase activity were used as starter cultures in this study. Fermentation was held for 120 days at 35 °C. The pH value increased in all samples, while salt concentration remained constant throughout fermentation. Aerobic bacteria count was significantly lower (p < 0.05) in the control than in inoculated samples as a result of starter cultures addition. However, it decreased during fermentation due to the growth inhibition by high salt concentration. Proteolytic bacterial count decreased during fermentation with no significant difference (p > 0.05) among samples. These bacteria hydrolyzed protein in anchovy to produce free amino acid precursors for amines formation by decarboxylase bacteria. The presence of biogenic amines producing bacteria in this study was considered to be indigenous from raw material or contamination during fermentation, since our cultures were negative histamine producers. Amino acid histidine, arginine, lysine and tyrosine concentration decreased at different rates during fermentation as they were converted into their respective amines. In general, biogenic amines concentration namely histamine, putrescine, cadaverine and tyramine increased throughout fermentation. However, their concentrations were markedly higher (p < 0.05) in the control (without starter cultures) as compared to the samples treated with starter cultures. Histamine concentration was reduced by 27.7% and 15.4% by Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively. Both cultures could also reduce other amines during fermentation. After 120 days of fermentation, the overall biogenic amines concentration was 15.9% and 12.5% less in samples inoculated with Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively, as compared to control samples. These findings emphasized that application of starter cultures with amines oxidase activity in fish sauce fermentation was found to be effective in reducing biogenic amines accumulation.
    Matched MeSH terms: Biogenic Amines/metabolism*
  5. Kazi JA, Abu-Hassan MI
    J Mol Neurosci, 2011 Oct;45(2):101-9.
    PMID: 20734160 DOI: 10.1007/s12031-010-9435-9
    A growing body of evidence suggests the existence of a functional interaction between gabapentin (GBP)-morphine system. However, the neuro-anatomical sites and molecular mechanism of action of gabapentin-morphine interaction to prevent and reverse morphine side effects as well as enhancement of the analgesic effect of morphine is not clear. Therefore, we examined the combined effects of GBP-morphine on acute morphine-induced c-Fos expression in rat nucleus accumbens. The combined effect of GBP-morphine was examined by means of c-Fos immunohistochemistry. A single intraperitoneal injection (i.p.) of morphine (10 mg/kg), saline (control), and co-injection of GBP (150 mg/kg) with morphine (5 mg/kg) was administered under anesthesia. The deeply anesthetized rats were perfused transcardially with 4% paraformaldehyde 2 h after drugs administration. Serial 40 μm thick sections of brain were cut and processed by immunohistochemistry to locate and quantify the sites and number of neurons with c-Fos immunoreactivity. Detection of c-Fos protein was performed using the peroxidase-antiperoxidase detection protocol. The present study demonstrated that, administration of GBP (150 mg/kg, i.p.) in combination with morphine (5 mg/kg, i.p.) significantly (p < 0.01) attenuated the acute morphine (5 mg/kg, i.p.)-induced c-Fos expression in the rat nucleus accumbens shell. Present results showed that GBP-morphine combination action prevented the acute morphine-induced c-Fos expression in rat nucleus accumbens. Moreover, this study provides first evidence of neuro-anatomical site and that GBP neutralized the morphine-induced activation of rat nucleus accumbens shell.
    Matched MeSH terms: Amines/metabolism
  6. Stepien M, Duarte-Salles T, Fedirko V, Floegel A, Barupal DK, Rinaldi S, et al.
    Int J Cancer, 2016 Jan 15;138(2):348-60.
    PMID: 26238458 DOI: 10.1002/ijc.29718
    Perturbations in levels of amino acids (AA) and their derivatives are observed in hepatocellular carcinoma (HCC). Yet, it is unclear whether these alterations precede or are a consequence of the disease, nor whether they pertain to anatomically related cancers of the intrahepatic bile duct (IHBC), and gallbladder and extrahepatic biliary tract (GBTC). Circulating standard AA, biogenic amines and hexoses were measured (Biocrates AbsoluteIDQ-p180Kit) in a case-control study nested within a large prospective cohort (147 HCC, 43 IHBC and 134 GBTC cases). Liver function and hepatitis status biomarkers were determined separately. Multivariable conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI) for log-transformed standardised (mean = 0, SD = 1) serum metabolite levels and relevant ratios in relation to HCC, IHBC or GBTC risk. Fourteen metabolites were significantly associated with HCC risk, of which seven metabolites and four ratios were the strongest predictors in continuous models. Leucine, lysine, glutamine and the ratio of branched chain to aromatic AA (Fischer's ratio) were inversely, while phenylalanine, tyrosine and their ratio, glutamate, glutamate/glutamine ratio, kynurenine and its ratio to tryptophan were positively associated with HCC risk. Confounding by hepatitis status and liver enzyme levels was observed. For the other cancers no significant associations were observed. In conclusion, imbalances of specific AA and biogenic amines may be involved in HCC development.
    Matched MeSH terms: Biogenic Amines/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links