Displaying all 4 publications

Abstract:
Sort:
  1. Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, et al.
    Biomed Res Int, 2017;2017:1272193.
    PMID: 28280725 DOI: 10.1155/2017/1272193
    Amylase is an important and indispensable enzyme that plays a pivotal role in the field of biotechnology. It is produced mainly from microbial sources and is used in many industries. Industrial sectors with top-down and bottom-up approaches are currently focusing on improving microbial amylase production levels by implementing bioengineering technologies. The further support of energy consumption studies, such as those on thermodynamics, pinch technology, and environment-friendly technologies, has hastened the large-scale production of the enzyme. Herein, the importance of microbial (bacteria and fungi) amylase is discussed along with its production methods from the laboratory to industrial scales.
    Matched MeSH terms: Amylases/isolation & purification
  2. Amid M, Manap Y, Zohdi NK
    Molecules, 2014 May 22;19(5):6635-50.
    PMID: 24858097 DOI: 10.3390/molecules19056635
    The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus) peel for the first time was investigated using a novel aqueous two-phase system (ATPS) consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO) copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR), pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w) EOPO 2500 and 15% (w/w) 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w) at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.
    Matched MeSH terms: Amylases/isolation & purification*
  3. Khoo SL, Amirul AA, Kamaruzaman M, Nazalan N, Azizan MN
    Folia Microbiol (Praha), 1994;39(5):392-8.
    PMID: 7729774
    Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an alpha-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5 +/- 2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55 degrees C and it was stable for 1 h up to 50 degrees C. The Km and V for gelatinized tapioca starch were 0.5 g/L and 108.67 mumol reducing sugars per mg protein per min, respectively.
    Matched MeSH terms: alpha-Amylases/isolation & purification*
  4. Amid M, Manap Y, Zohdi NK
    Molecules, 2014;19(3):3731-43.
    PMID: 24662085 DOI: 10.3390/molecules19033731
    Amylase is one of the most important enzymes in the world due to its wide application in various industries and biotechnological processes. In this study, amylase enzyme from Hylocereus polyrhizus was encapsulated for the first time in an Arabic gum-chitosan matrix using freeze drying. The encapsulated amylase retained complete biocatalytic activity and exhibited a shift in the optimum temperature and considerable increase in the pH and temperature stabilities compared to the free enzyme. Encapsulation of the enzyme protected the activity in the presence of ionic and non-ionic surfactants and oxidizing agents (H₂O₂) and enhanced the shelf life. The storage stability of amylase is found to markedly increase after immobilization and the freeze dried amylase exhibited maximum encapsulation efficiency value (96.2%) after the encapsulation process. Therefore, the present study demonstrated that the encapsulation of the enzyme in a coating agent using freeze drying is an efficient method to keep the enzyme active and stable until required in industry.
    Matched MeSH terms: Amylases/isolation & purification*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links