Displaying all 2 publications

Abstract:
Sort:
  1. Low KS, Lee CK, Lee CY
    Appl Biochem Biotechnol, 2001 Jan;90(1):75-87.
    PMID: 11257809
    The potential of quaternized wood (QW) chips in removing hexavalent chromium from synthetic solution and chrome waste under both batch and continuous-flow conditions was investigated. Sorption was found to be dependent on pH, metal concentration, and temperature. QW chips provide higher sorption capacity and wider pH range compared with untreated wood chips. The equilibrium data could be fitted into the Langmuir isotherm model, and maximum sorption capacities were calculated to be 27.03 and 25.77 mg/g in synthetic chromate solution and chrome waste, respectively. The presence of sulfate in high concentration appeared to suppress the uptake of chromium by QW chips. Column studies showed that bed depth influenced the breakthrough time greatly whereas flow rate of influent had little effect on its sorption on the column.
    Matched MeSH terms: Anions/metabolism
  2. George GN, Gailer J, Ponomarenko O, La Porte PF, Strait K, Alauddin M, et al.
    J Inorg Biochem, 2016 05;158:24-29.
    PMID: 26883676 DOI: 10.1016/j.jinorgbio.2016.01.022
    Certain arsenic and selenium compounds show a remarkable mutual cancelation of toxicities, where a lethal dose of one can be voided by an equimolar and otherwise lethal dose of the other. It is now well established that the molecular basis of this antagonism is the formation and biliary excretion of seleno bis-(S-glutathionyl) arsinium anion [(GS)2AsSe](-). Previous work has definitively demonstrated the presence of [(GS)2AsSe](-) in rabbit bile, but only in the presence of other arsenic and selenium species. Rabbits have a gall bladder, which concentrates bile and lowers its pH; it seems likely that this may be responsible for the breakdown of biliary [(GS)2AsSe](-). Since rats have no gall bladder, the bile proceeds directly through the bile duct from the hepatobiliary tree. In the present work we have shown that the primary product of biliary co-excretion of arsenic and selenium in rats is [(GS)2AsSe](-), with essentially 100% of the arsenic and selenium present as this species. The chemical plausibility of the X-ray absorption spectroscopy-derived structural conclusions of this novel arsenic and selenium co-excretion product is supported by density functional theory calculations. These results establish the biomolecular basis to further explore the use of selenium dietary supplements as a possible palliative for chronic low-level arsenic poisoning of human populations.
    Matched MeSH terms: Anions/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links