Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation. This in vivo study characterizes the inflammatory response caused by pulmonary deposition of the rifapentine particles. The rifapentine powder was delivered to BALB/c mice by intratracheal insufflation at a dose of 20 mg/kg. The inflammatory response in the lungs and bronchoalveolar lavage (BAL) was examined at 12 h, 24 h, and 7 days post-treatment by flow cytometry and histopathology. At 12 and 24 h post-treatment, there was a significant influx of neutrophils into the lungs, and this returned to normal by day 7. A significant recruitment of macrophages occurred in the BAL at 24 h. Consistent with these findings, histopathological analysis demonstrated pulmonary vascular congestion and significant macrophage recruitment at 12 and 24 h post-treatment. In conclusion, the pulmonary delivery of crystalline rifapentine caused a transient neutrophil-associated inflammatory response in the lungs that resolved over 7 days. This observation may limit pulmonary delivery of rifapentine to once a week at a dose of 20 mg/kg or less. The effectiveness of weekly dosing with inhalable rifapentine will be assessed in murine Mycobacterium tuberculosis infection.
Because anti-tumor necrosis factor (anti-TNF) therapy has become increasingly popular in many Asian countries, the risk of developing active tuberculosis (TB) among anti-TNF users may raise serious health problems in this region. Thus, the Asian Organization for Crohn's and Colitis and the Asia Pacific Association of Gastroenterology have developed a set of consensus statements about risk assessment, detection and prevention of latent TB infection, and management of active TB infection in patients with inflammatory bowel disease (IBD) receiving anti-TNF treatment. Twenty-three consensus statements were initially drafted and then discussed by the committee members. The quality of evidence and the strength of recommendations were assessed by using the Grading of Recommendations Assessment, Development, and Evaluation methodology. Web-based consensus voting was performed by 211 IBD specialists from nine Asian countries concerning each statement. A consensus statement was accepted if at least 75% of the participants agreed. Part 2 of the statements comprised three parts: (3) management of latent TB in preparation for anti-TNF therapy, (4) monitoring during anti-TNF therapy, and (5) management of an active TB infection after anti-TNF therapy. These consensus statements will help clinicians optimize patient outcomes by reducing the morbidity and mortality related to TB infections in patients with IBD receiving anti-TNF treatment.