Displaying all 3 publications

Abstract:
Sort:
  1. Kano S, Onda T, Matsumoto Y, Buchachart K, Krudsood S, Looareesuwan S, et al.
    PMID: 9886125
    It was reported that a 47kDa antigenic polypeptide of Plasmodium falciparum had been strongly presented by the sera from 1) imported Japanese malaria patients with severe symptoms and 2) symptomatic and parasitemic inhabitants in endemic areas in the Sudan, Malaysia and the Philippines. In the present study, we observed the reactivity of the sera from falciparum malaria patients who had been hospitalized in the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, and compared the antibody response against the 47kDa antigenic polypeptide according to the severity of the patients. It was observed that antibodies to this molecule were more commonly shared in sera from severer patients, although the IFAT titers against the whole P. falciparum parasite antigen were lower in the group, which suggested that this antibody against the 47kDa molecule was playing a specific role at a severe stage of the infection. Determination of the immunological features of the antigenic molecules of parasites by this type of sero-epidemiological study will provide a new assay system for evaluation of immune status of individuals in different severity and suggest a way of vaccine development.
    Matched MeSH terms: Antibodies, Protozoan/biosynthesis*
  2. Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ
    Pathog Glob Health, 2018 10;112(7):387-394.
    PMID: 30332344 DOI: 10.1080/20477724.2018.1536854
    Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
    Matched MeSH terms: Antibodies, Protozoan/biosynthesis
  3. Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY
    Exp Parasitol, 2018 Sep;192:19-24.
    PMID: 30031120 DOI: 10.1016/j.exppara.2018.07.009
    Amoebae from the genus Acanthamoeba are facultative pathogens of humans and other animals. In humans they most frequently infect the eye causing a sight threatening infection known as Acanthamoeba keratitis (AK), and also cause an often fatal encephalitis (GAE). A mannose-binding protein (MBP) has been identified as being important for Acanthamoeba infection especially in AK. This lectin has previously been characterized from Acanthamoeba castellanii as consisting of multiple 130 kDa subunits. MBP expression correlates with pathogenic potential and is expressed in a number of Acanthamoeba species. Here we report the purification of a similar lectin from Acanthamoeba culbertsoni and the production of a monoclonal antibody to it. The A. culbertsoni MBP was isolated by affinity chromatography using α-D-mannose agarose and has an apparent molecular weight of 83 kDa. The monoclonal antibody is an IgM that is useful in both western blots and immunofluorescence. We expect that this antibody will be useful in the study of the pathology of A. culbertsoni and in its identification in clinical samples.
    Matched MeSH terms: Antibodies, Protozoan/biosynthesis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links