Genetic polymorphisms of CYP2C9 among different populations in different geographical regions could be different. CYP2C9 has been reported to be the enzyme responsible for the metabolism of many drugs, including warfarin and other drugs with a narrow therapeutic index. Realising the importance of inter-individual differences in the genetic profile in determining the outcome of a drug therapy, this study was conducted to explore the types and frequencies of CYP2C9 alleles in healthy and warfarin-treated Malays and Chinese, the two major ethnic groups in Malaysia. We aimed to evaluate the prevalence of the types and frequencies of common CYP2C9 alleles (*1, *2, *3 and *4) among the healthy unrelated individuals and diseased patients prescribed with warfarin.
Dirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.