Testicular volume (TV) is one of the most important traits used in evaluation of the reproductive capacity of male animals. The levelled-container used in the present study was found to be reliable instrument to measure TV, based on a water displacement method. Sperm-associated antigen 11 (SPAG11) is an important gene that affects male reproductive performance. An objective of the present study, therefore, was to determine if single nucleotide polymorphisms (SNPs) in a fragment of the SPAG11 gene could be used to determine associations with values of testicular biometric variables in Boer goats. Primers were designed to amplify the full length of the first two exons of SPAG11. The targeted fragment was generated using a molecular cloning technique. As the result, four SNPs, [g.1256A > G(ss19199134542), g.1270C > T(ss19199134541), g.1325A > G(ss19199134540) and g.1327 G > A (ss19199134543)], were detected using a single-base extension (SBE) method. Two of these SNPs were synonymous (ss19199134540 and ss19199134542). The other two SNPs were nonsynonymous, thus, there were changes in amino acid in the resulting protein: threonine to isoleucine (for ss19199134541) and arginine to glutamine (for ss19199134543). The SNP ss19199134543 was the only locus detected that was associated with TV (P = 0.002). None of the testes dimensions nor TW were associated with detected SPAG11 gene SNPs. Most likely, the ss19199134543 locus affects tissue structures adjacent to the testes, causing the change in TV. In conclusion, among the studied testicular biometric variables, TV had the greatest potential for preselecting of bucks with desirable semen quality. The use of the levelled-container as a TV measurement approach was an accurate and reliable method.
The gene encoding the 195,000-Da major merozoite surface antigen (gp195) of the FUP (Uganda-Palo Alto) isolate of Plasmodium falciparum, a strain widely used for monkey vaccination experiments, has been cloned and sequenced. The translated amino acid sequence of the FUP gp195 protein is closely related to the sequences of corresponding proteins of the CAMP (Malaysia) and MAD-20 (Papua New Guinea) isolates and more distantly related to those of the Wellcome (West Africa) and K1 (Thailand) isolates, supporting the proposed allelic dimorphism of gp195 within the parasite population. The prevalence of dimorphic sequences within the gp195 protein suggests that many gp195 epitopes would be group-specific. Despite the extensive differences in amino acid sequence between gp195 proteins of these two groups, the hydropathy profiles of proteins representative of both groups are very similar. The conservation of overall secondary structure shown by the hydropathy profile comparison indicates that gp195 proteins of the various P. falciparum isolates are functionally equivalent. This information on the primary structure of the FUP gp195 protein will enable us to evaluate the possible roles of conserved, group-specific and variable epitopes in immunity to the blood stage of the malaria parasite.
Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.