Displaying all 2 publications

Abstract:
Sort:
  1. Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al.
    Nat Commun, 2019 10 08;10(1):4574.
    PMID: 31594929 DOI: 10.1038/s41467-019-12574-y
    Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor.
    Matched MeSH terms: Archaea/enzymology
  2. Jackson CR, Liew KC, Yule CM
    Microb Ecol, 2009 Apr;57(3):402-12.
    PMID: 18548182 DOI: 10.1007/s00248-008-9409-4
    Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27-54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.
    Matched MeSH terms: Archaea/enzymology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links