Quantitative real-time polymerase chain reaction (qRT-PCR) is useful for diagnosis and studying virus replication. We developed positive- and negative-strand qRT-PCR assays to detect nsP3 of chikungunya virus (CHIKV), a positive-strand RNA alphavirus that causes epidemic fever, rash, and arthritis. The positive- and negative-strand qRT-PCR assays had limits of quantification of 1 and 3 log10 RNA copies/reaction, respectively. Compared to a published E1 diagnostic assay using 30 laboratory-confirmed clinical samples, the positive-strand nsP3 qRT-PCR assay had higher R(2) and efficiency and detected more positive samples. Peak viral load of 12.9 log(10) RNA copies/mL was reached on day 2 of illness, and RNA was detectable up to day 9, even in the presence of anti-CHIKV IgM. There was no correlation between viral load and persistent arthralgia. The positive-strand nsP3 assay is suitable for diagnosis, while the negative-strand nsP3 assay, which uses tagged primers to increase specificity, is useful for study of active viral replication kinetics.
Chikungunya fever (CHIKF) is currently distributed in Africa and in South and Southeast Asia; outbreaks have occurred periodically in the region over the past 50 years. After a large outbreak had occurred in countries in the western Indian Ocean region in 2005, several countries reported cases of CHIKF from travelers who had visited affected areas. In Japan, there have been only 15 cases of CHIKF patients so far, according to the National Institute of Infectious Diseases. Therefore, to evaluate the clinical and radiological features associated with the disease, we describe 6 imported cases of CHIKF. All of the patients had had prolonged arthralgia on admission to our hospital, and diagnosis was confirmed with specific antibodies by using an IgM-capture enzyme-linked immunoassay and a plaque reduction neutralizing antibody assay. Magnetic resonance imaging (MRI) of one patient revealed erosive arthritis and tenosynovitis during the convalescence stage. Clinicians should be aware of the late consequences of infection by the chikungunya virus (CHIKV) and recognize the possible association of subacute and chronic arthritis features. In addition, competent vectors of CHIKV, Aedes aegypti, can now be found in many temperate areas of the eastern and western hemispheres, including Japan. This fact raises concern that the virus could be introduced and become established in these areas. This necessitates an increased awareness of the disease, because imported cases are likely to contribute to the spread of CHIKV infection wherever the competent mosquito vectors are distributed.