Displaying all 2 publications

Abstract:
Sort:
  1. Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, Islam MA
    Int J Mol Sci, 2021 Feb 28;22(5).
    PMID: 33671049 DOI: 10.3390/ijms22052449
    Recent advances in immunology enabled the characterization of several signal transmitting pathways responsible for proper cytokine and chemokine signaling. Among them, Janus kinases (JAKs) are essential components of receptor activation systems. The discovery of JAK kinases enabled the synthesis of JAK kinase inhibitors (JAKi or Jakinibs), which have proven to be efficacious in the treatment of hematologic malignancies and several rheumatological disorders and continue to be investigated in many clinical indications. Blocking multiple cytokines belonging to several cytokine families with a single small molecule may, however, create a potential risk for the patients. Recently, a higher risk of thromboembolic complications, namely, deep vein thrombosis and pulmonary embolism, has been recognized as the main concern during treatment with Jakinibs. At present, it is not entirely clear whether this increased risk is related to direct cytokine blockade, the presence of concomitant diseases in treated patients or other unknown circumstances that work together to increase the risk of this side effect. In this review, we discuss data on the risk of thromboembolic side effects, with special emphasis on the mechanism that may be responsible for this increased risk. Many indirect data indicate that higher thromboembolic risk may be related to the specificity of JAK inhibitor action, such that preferentially blocking one signaling pathway upsets the balance between pro and anti-thrombotic activities.
    Matched MeSH terms: Arthritis, Rheumatoid/enzymology
  2. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Arthritis, Rheumatoid/enzymology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links