Displaying all 2 publications

Abstract:
Sort:
  1. Ghodsian N, Ismail P, Ahmadloo S, Eskandarian N, Etemad A
    Biomed Res Int, 2016;2016:6712529.
    PMID: 27413750 DOI: 10.1155/2016/6712529
    Background. Atrial natriuretic peptide (ANP) considerably influences blood pressure regulation through water and sodium homoeostasis. Several of the studies have utilized anonymous genetic polymorphic markers and made inconsequent claims about the ANP relevant disorders. Thus, we screened Insertion/Deletion (ID) and G191A polymorphisms of ANP to discover sequence variations with potential functional significance and to specify the linkage disequilibrium pattern between polymorphisms. The relationships of detected polymorphisms with EH with or without Type 2 Diabetes Mellitus (T2DM) status were tested subsequently. Method. ANP gene polymorphisms (I/D and A191G) were specified utilizing mutagenically separated Polymerase Chain Reaction (PCR) in 320 subjects including 163 EH case subjects and 157 controls. Result. This case-control study discovered a significant association between I/D polymorphisms of ANP gene in EH patient without T2DM. However, the study determined no association between G191A polymorphisms of ANP in EH with or without T2DM. In addition, sociodemographic factors in the case and healthy subjects exhibited strong differences (P < 0.05). Conclusion. As a risk factor, ANP gene polymorphisms may affect hypertension. Despite the small sample size in this study, it is the first research assessing the ANP gene polymorphisms in both EH and T2DM patients among Malaysian population.
    Matched MeSH terms: Atrial Natriuretic Factor/genetics*
  2. Tai KY, Wong K, Aghakhanian F, Parhar IS, Dhaliwal J, Ayub Q
    BMC Genet, 2020 03 14;21(1):31.
    PMID: 32171244 DOI: 10.1186/s12863-020-0835-8
    BACKGROUND: Publicly available genome data provides valuable information on the genetic variation patterns across different modern human populations. Neuropeptide genes are crucial to the nervous, immune, endocrine system, and physiological homeostasis as they play an essential role in communicating information in neuronal functions. It remains unclear how evolutionary forces, such as natural selection and random genetic drift, have affected neuropeptide genes among human populations. To date, there are over 100 known human neuropeptides from the over 1000 predicted peptides encoded in the genome. The purpose of this study is to analyze and explore the genetic variation in continental human populations across all known neuropeptide genes by examining highly differentiated SNPs between African and non-African populations.

    RESULTS: We identified a total of 644,225 SNPs in 131 neuropeptide genes in 6 worldwide population groups from a public database. Of these, 5163 SNPs that had ΔDAF |(African - non-African)| ≥ 0.20 were identified and fully annotated. A total of 20 outlier SNPs that included 19 missense SNPs with a moderate impact and one stop lost SNP with high impact, were identified in 16 neuropeptide genes. Our results indicate that an overall strong population differentiation was observed in the non-African populations that had a higher derived allele frequency for 15/20 of those SNPs. Highly differentiated SNPs in four genes were particularly striking: NPPA (rs5065) with high impact stop lost variant; CHGB (rs6085324, rs236150, rs236152, rs742710 and rs742711) with multiple moderate impact missense variants; IGF2 (rs10770125) and INS (rs3842753) with moderate impact missense variants that are in linkage disequilibrium. Phenotype and disease associations of these differentiated SNPs indicated their association with hypertension and diabetes and highlighted the pleiotropic effects of these neuropeptides and their role in maintaining physiological homeostasis in humans.

    CONCLUSIONS: We compiled a list of 131 human neuropeptide genes from multiple databases and literature survey. We detect significant population differentiation in the derived allele frequencies of variants in several neuropeptide genes in African and non-African populations. The results highlights SNPs in these genes that may also contribute to population disparities in prevalence of diseases such as hypertension and diabetes.

    Matched MeSH terms: Atrial Natriuretic Factor/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links