Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
The pathogenesis of Parkinson's disease (PD) remains elusive. There is still no available disease-modifying strategy against PD, whose management is mainly symptomatic. A growing amount of preclinical evidence shows that a complex interplay between autophagy dysregulation, mitochondrial impairment, endoplasmic reticulum stress, oxidative stress, and excessive neuroinflammation underlies PD pathogenesis. Identifying key molecules linking these pathological cellular processes may substantially aid in our deeper understanding of PD pathophysiology and the development of novel effective therapeutic approaches. Emerging preclinical evidence indicates that apelin, an endogenous neuropeptide acting as a ligand of the orphan G protein-coupled receptor APJ, may play a key neuroprotective role in PD pathogenesis, via inhibition of apoptosis and dopaminergic neuronal loss, autophagy enhancement, antioxidant effects, endoplasmic reticulum stress suppression, as well as prevention of synaptic dysregulation in the striatum, excessive neuroinflammation, and glutamate-induced excitotoxicity. Underlying signaling pathways involve phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin, extracellular signal-regulated kinase 1/2, and inositol requiring kinase 1α/XBP1/C/EBP homologous protein. Herein, we discuss the role of apelin/APJ axis and associated molecular mechanisms on the pathogenesis of PD in vitro and in vivo and provide evidence for its challenging therapeutic potential.
Alzheimer's Disease (AD) is an age-dependent neurodegenerative disorder, the most common type of dementia that is clinically characterized by the presence of beta-amyloid (Aβ) extracellularly and intraneuronal tau protein tangles that eventually leads to the onset of memory and cognition impairment, development of psychiatric symptoms and behavioral disorders that affect basic daily activities. Current treatment approved by the U.S Food and Drug Administration (FDA) for AD is mainly focused on the symptoms but not on the pathogenesis of the disease. Recently, receptor-interacting protein kinase 1 (RIPK1) has been identified as a key component in the pathogenesis of AD through necroptosis. Furthermore, genetic and pharmacological suppression of RIPK1 has been shown to revert the phenotype of AD and its mediating pathway is yet to be deciphered. This review is aimed to provide an overview of the pathogenesis and current treatment of AD with the involvement of autophagy as well as providing a novel insight into RIPK1 in reverting the progression of AD, probably through an autophagy machinery.