Displaying all 2 publications

Abstract:
Sort:
  1. Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J
    Cell Death Dis, 2013;4:e697.
    PMID: 23807226 DOI: 10.1038/cddis.2013.219
    Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/genetics
  2. Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, et al.
    Virus Res, 2017 04 02;233:17-28.
    PMID: 28279803 DOI: 10.1016/j.virusres.2017.02.012
    Japanese encephalitis (JE) is a neurotropic flavivirus that causes inflammation in central nervous system (CNS), neuronal death and also compromises the structural and functional integrity of the blood-brain barrier (BBB). The aim of this study was to evaluate the BBB disruption and apoptotic process in Japanese encephalitis virus (JEV)-infected transfected human brain microvascular endothelial cells (THBMECs). THBMECs were overlaid by JEV with different MOIs (0.5, 1.0, 5.0 and 10.0) and monitored by electrical cell-substrate impedance sensing (ECIS) in a real-time manner in order to observe the barrier function of THBMECs. Additionally, the level of 43 apoptotic proteins was quantified in the virally infected cells with different MOIs at 24h post infection. Infection of THBMEC with JEV induced an acute reduction in transendothelial electrical resistance (TEER) after viral infection. Also, significant up-regulation of Bax, BID, Fas and Fasl and down-regulation of IGFBP-2, BID, p27 and p53 were observed in JEV infected THBMECs with 0.5 and 10 MOIs compared to uninfected cells. Hence, the permeability of THBMECs is compromised during the JEV infection. In addition high viral load of the virus has the potential to subvert the host cell apoptosis to optimize the course of viral infection through deactivation of pro-apoptotic proteins.
    Matched MeSH terms: BH3 Interacting Domain Death Agonist Protein/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links