The partitioning of β-mannanase derived from Bacillus subtilis ATCC 11774 in aqueous two-phase system (ATPS) was studied. The ATPS containing different molecular weight of polyethylene glycol (PEG) and types of salt were employed in this study. The PEG/salt composition for the partitioning of β-mannanase was optimized using response surface methodology. The study demonstrated that ATPS consists of 25% (w/w) of PEG 6000 and 12.52% (w/w) of potassium citrate is the optimum composition for the purification of β-mannanase with a purification fold (PF) of 2.28 and partition coefficient (K) of 1.14. The study on influences of pH and crude loading showed that ATPS with pH 8.0 and 1.5% (w/w) of crude loading gave highest PF of 3.1. To enhance the partitioning of β-mannanase, four ionic liquids namely 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), 1-butyl-3-methylimidazolium bromide ([Bmim]Br), 1-ethyl-3-methylimidazolium bromide ([Emim]Br) was added into the system as an adjuvant. The highest recovery yield (89.65%) was obtained with addition of 3% (w/w) of [Bmim]BF4. The SDS-PAGE analysis revealed that the β-mannanase was successfully recovered in the top phase of ATPS with the molecular size of 36.7kDa. Therefore, ATPS demonstrated a simple and efficient approach for recovery and purification of β-mannanase from fermentation broth in one single-step strategy.
The current experiment was conducted to evaluate and compare the efficacy of two different probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 in diet of Japanese eel, Anguilla japonica. Seven experimental diets were formulated to contain no probiotics (CON), three graded levels of B. subtilis at 106 (BS1), 107 (BS2), 108 (BS3) and L. plantarum at 106 (LP1), 107 (LP2), 108 (LP3) CFU/g diet. Twenty fish averaging 8.29 ± 0.06 g were distributed in to 21 aquaria and were randomly assigned to one of the experimental diets in triplicate groups. Average weight gain (WG), feed efficiency (FE), and protein efficiency ratio (PER) of fish fed B. subtilis at 107 (BS2) and 108 (BS3) CFU/g diet were significantly higher than those of fish fed other experimental diets (P