A peptide with the sequence CTLTTKLYC has previously been identified to inhibit the propagation of Newcastle disease virus (NDV) in embryonated chicken eggs and tissue culture. NDV has been classified into two main groups: the velogenic group, and mesogenic with lentogenic strains as the other group based on its dissociation constants. In this study the peptide, CTLTTKLYC, displayed on the pIII protein of a filamentous M13 phage was synthesized and mutated in order to identify the amino acid residues involved in the interactions with NDV. Mutations of C1 and K6 to A1 and A6 did not affect the binding significantly, but substitution of Y8 with A8 dramatically reduced the interaction. This suggests that Y8 plays an important role in the peptide-virus interaction. The three-dimensional structure of the peptide was determined using circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular modeling. The peptide exhibited two possible conformers. One that consists of consecutive beta-turns around T2-L3-T4-T5 and K6-L7-Y8-C9. The other conformer exhibited a beta-hairpin bend type of structure with a bend around L3-T4-T5-K6.
Fusion M13 phage with disulfide constrained heptapeptide, C-WSFFSNI-C, inserted into the minor coat protein (gpIII), has been selected in the current study as ligand in direct purification of hepatitis B core antigen (HBcAg) from unclarified Escherichia coli (E. coli) feedstock. The selected fusion phage showed strong association with the surface of the core particle. In the present study, this fusion M13 phage was immobilized onto Streamline base matrix via epoxy activation and used as adsorbent to capture HBcAg from crude E. coli homogenate. The maximum binding capacity for the adsorbent was 3.76 mg/mL with equilibrium coefficient of 1.83 mg/mL. Due to the slow uptake rate of HBcAg by M13 phage-immobilized adsorbents, a modified EBAC operation with recirculation of feedstock into the expanded bed has been investigated in this study. The introduction of feedstock recirculation has led to an 18% increase in yield; however, the purity of the eluted product was reduced by 15% compared with typical EBAC operation. The level of antigenicity exhibited by the core particles purified by both EBAC operations employed in the present study was comparable to that purified using sucrose ultracentrifugation.
A random peptide library of heptamers displayed on the surface of M13 bacteriophage was used to identify specific epitopes of antibodies in pooled sera of swine naturally infected by Nipah virus. The selected heptapeptides were aligned with protein sequences of Nipah virus and several putative epitopes were identified within the nucleocapsid protein. A total of 41 of 60 (68%) selected phage clones had inserts resembling a region with the sequence SNRTQGE, located at the C-terminal end (amino acids 503-509) of the nucleocapsid protein. The binding of antibodies in the swine and human antisera to the phage clone was inhibited by a synthetic peptide corresponding to this region. Epitopes identified by phage display are consistent with the predicted antigenic sites for the Nipah virus nucleocapsid protein. The selected phage clone used as a coating antigen discriminated swine and human Nipah virus sera-positive from sera-negative samples exhibiting characteristics, which might be attractive for diagnostic tests.
A method to map the specific site on dengue virus envelope protein (E) that interacts with cells and a neutralizing antibody is developed using serially truncated dengue virus type 2 (DENV-2) E displayed on M13 phages as recombinant E-g3p fusion proteins. Recombinant phages displaying the truncated E consisting of amino acids 297-423 (EB2) and amino acids 379-423 (EB4) were neutralized by DENV-2 patient sera and the DENV-2 E-specific 3H5-1 monoclonal antibodies suggesting that the phages retained the DENV-2 E antigenic properties. The EB4 followed by EB2 recombinant phages bound the most to human monocytes (THP-1), African green monkey kidney (Vero) cells, mosquito (C6/36) cells, ScFv specific against E and C6/36 cell proteins. Two potential cell attachment sites were mapped to loop I (amino acids 297 to 312) and loop II (amino acids 379-385) of the DENV-2 E using the phage-displayed truncated DENV-2 E fragments and by the analysis of the E structure. Loop II was present only in EB4 recombinant phages. There was no competition for binding to C6/36 cell proteins between EB2 and EB4 phages. Loop I and loop II are similar to the sub-complex specific and type-specific neutralizing monoclonal antibody binding sites, respectively. Hence, it is proposed that binding and entry of DENV involves the interaction of loop I to cell surface glycosaminoglycan-motif and a subsequent highly specific interaction involving loop II with other cell proteins. The phage displayed truncated DENV-2 E is a powerful and useful method for the direct determination of DENV-2 E cell binding sites.