Displaying all 7 publications

Abstract:
Sort:
  1. Tay ST, Kho KL, Wee WY, Choo SW
    Acta Trop, 2016 Mar;155:25-33.
    PMID: 26658020 DOI: 10.1016/j.actatropica.2015.11.019
    Bartonella elizabethae has been known to cause endocarditis and neuroretinitis in humans. The genomic features and virulence profiles of a B. elizabethae strain (designated as BeUM) isolated from the spleen of a wild rat in Kuala Lumpur, Malaysia are described in this study. The BeUM strain has a genome size of 1,932,479bp and GC content of 38.3%. There is a high degree of conservation between the genomes of strain BeUM with B. elizabethae type strains (ATCC 49927 and F9251) and a rat-borne strain, Re6043vi. Of 2137 gene clusters identified from B. elizabethae strains, 2064 (96.6%) are indicated as the core gene clusters. Comparative genome analysis of B. elizabethae strains reveals virulence genes which are known in other pathogenic Bartonella species, including VirB2-11, vbhB2-B11, VirD4, trw, vapA2-5, hbpA-E, bepA-F, bepH, badA/vomp/brp, ialB, omp43/89 and korA-B. A putative intact prophage has been identified in the strain BeUM, in addition to a 8kb pathogenicity island. The whole genome analysis supports the zoonotic potential of the rodent-borne B. elizabethae, and provides basis for future functional and pathogenicity studies of B. elizabethae.
    Matched MeSH terms: Bartonella/genetics*
  2. Blasdell KR, Perera D, Firth C
    Am J Trop Med Hyg, 2019 03;100(3):506-509.
    PMID: 30526734 DOI: 10.4269/ajtmh.18-0616
    Rodents are the most prominent animal host of Bartonella spp., which are associated with an increasing number of human diseases worldwide. Many rodent species thrive in urban environments and live in close contact with people, which can lead to an increased human risk of infection from rodent-borne pathogens. In this study, we explored the prevalence and distribution of Bartonella spp. in rodents in urban, developing, and rural environments surrounding a growing city in Sarawak, Malaysian Borneo. We found that although Bartonella spp. infection was pervasive in most rodent species sampled, prevalence was highest in urban areas and infection was most commonly detected in the predominant indigenous rodent species sampled (Sundamys muelleri). Within the urban environment, parks and remnant green patches were significantly associated with the presence of both S. muelleri and Bartonella spp., indicating higher localized risk of infection for people using these environments for farming, foraging, or recreation.
    Matched MeSH terms: Bartonella/genetics*
  3. Tay ST, Kho KL, Lye SF, Ngeow YF
    J Vet Med Sci, 2018 Apr 18;80(4):653-661.
    PMID: 29311425 DOI: 10.1292/jvms.17-0448
    Bartonella bovis is a small Gram-negative bacterium recognized as an etiological agent for bacteremia and endocarditis in cattle. As few reports are available on the taxonomic position of B. bovis and its mechanism of virulence, this study aims to resolve the phylogeny of B. bovis and investigate putative virulence genes based on whole genome sequence analysis. Genome-wide comparisons based on single nucleotide polymorphisms (SNP) and orthologous genes were performed in this study for phylogenetic inference of 27 Bartonella species. Rapid Annotation using Subsystem Technology (RAST) analysis was used for annotation of putative virulence genes. The phylogenetic tree generated from the genome-wide comparison of orthologous genes exhibited a topology almost similar to that of the tree generated from SNP-based comparison, indicating a high concordance in the nucleotide and amino acid sequences of Bartonella spp. The analyses show consistent grouping of B. bovis in a cluster related to ruminant-associated species, including Bartonella australis, Bartonella melophagi and Bartonella schoenbuchensis. RAST analysis revealed genes encoding flagellar components, in corroboration with the observation of flagella-like structure of BbUM strain under negative straining. Genes associated with virulence, disease and defence, prophages, membrane transport, iron acquisition, motility and chemotaxis are annotated in B. bovis genome. The flagellin (flaA) gene of B. bovis is closely related to Bartonella bacilliformis and Bartonella clarridgeiae but distinct from other Gram-negative bacteria. The absence of type IV secretion systems, the bona fide pathogenicity factors of bartonellae, in B. bovis suggests that it may have a different mechanism of pathogenicity.
    Matched MeSH terms: Bartonella/genetics*
  4. Kernif T, Socolovschi C, Wells K, Lakim MB, Inthalad S, Slesak G, et al.
    Comp Immunol Microbiol Infect Dis, 2012 Jan;35(1):51-7.
    PMID: 22153360 DOI: 10.1016/j.cimid.2011.10.003
    Rickettsioses and bartonelloses are arthropod-borne diseases of mammals with widespread geographical distributions. Yet their occurrence in specific regions, their association with different vectors and hosts and the infection rate of arthropod-vectors with these agents remain poorly studied in South-east Asia. We conducted entomological field surveys in the Lao PDR (Laos) and Borneo, Malaysia by surveying fleas, ticks, and lice from domestic dogs and collected additional samples from domestic cows and pigs in Laos. Rickettsia felis was detected by real-time PCR with similar overall flea infection rate in Laos (76.6%, 69/90) and Borneo (74.4%, 268/360). Both of the encountered flea vectors Ctenocephalides orientis and Ctenocephalides felis felis were infected with R. felis. The degrees of similarity of partial gltA and ompA genes with recognized species indicate the rickettsia detected in two Boophilus spp. ticks collected from a cow in Laos may be a new species. Isolation and further characterization will be necessary to specify it as a new species. Bartonella clarridgeiae was detected in 3/90 (3.3%) and 2/360 (0.6%) of examined fleas from Laos and Borneo, respectively. Two fleas collected in Laos and one flea collected in Borneo were co-infected with both R. felis and B. clarridgeiae. Further investigations are needed in order to isolate these agents and to determine their epidemiology and aetiological role in unknown fever in patients from these areas.
    Matched MeSH terms: Bartonella/genetics*
  5. Tay ST, Mokhtar AS, Zain SN, Low KC
    Am J Trop Med Hyg, 2014 Jun;90(6):1039-42.
    PMID: 24732465 DOI: 10.4269/ajtmh.13-0273
    This study describes our investigation on the prevalence and molecular identification of bartonellae from Rattus diardii and R. norvegicus in the urban areas of Malaysia. Of 95 rats investigated, Bartonella tribocorum, B. rattimassiliensis, B. coopersplainsensis, B. elizabethae, and B. queenslandensis were isolated from kidney and spleen homogenates of four rats. Bartonellae DNA was amplified from the rat organ tissues by using primers specific for the bartonellae RNA polymerase beta subunit (rpoB) gene in nine other rats. Sequence analysis of the rpoB gene fragments shows the identification of B. queenslandensis in five rats, B. elizabethae in three rats, and B. tribocorum in one rat. Combining the results of isolation and molecular detection of bartonellae, we found that the prevalence of Bartonella infection in the Rattus spp. investigated in this study was 13.7%. Implementation of effective rat control program in the urban areas is necessary to prevent the spillover of bartonellosis from rats to humans.
    Matched MeSH terms: Bartonella/genetics
  6. Nguyen VL, Colella V, Greco G, Fang F, Nurcahyo W, Hadi UK, et al.
    Parasit Vectors, 2020 Aug 15;13(1):420.
    PMID: 32799914 DOI: 10.1186/s13071-020-04288-8
    BACKGROUND: Ticks and fleas are considered amongst the most important arthropod vectors of medical and veterinary concern due to their ability to transmit pathogens to a range of animal species including dogs, cats and humans. By sharing a common environment with humans, companion animal-associated parasitic arthropods may potentially transmit zoonotic vector-borne pathogens (VBPs). This study aimed to molecularly detect pathogens from ticks and fleas from companion dogs and cats in East and Southeast Asia.

    METHODS: A total of 392 ticks and 248 fleas were collected from 401 infested animals (i.e. 271 dogs and 130 cats) from China, Taiwan, Indonesia, Malaysia, Singapore, Thailand, the Philippines and Vietnam, and molecularly screened for the presence of pathogens. Ticks were tested for Rickettsia spp., Anaplasma spp., Ehrlichia spp., Babesia spp. and Hepatozoon spp. while fleas were screened for the presence of Rickettsia spp. and Bartonella spp.

    RESULT: Of the 392 ticks tested, 37 (9.4%) scored positive for at least one pathogen with Hepatozoon canis being the most prevalent (5.4%), followed by Ehrlichia canis (1.8%), Babesia vogeli (1%), Anaplasma platys (0.8%) and Rickettsia spp. (1%) [including Rickettsia sp. (0.5%), Rickettsia asembonensis (0.3%) and Rickettsia felis (0.3%)]. Out of 248 fleas tested, 106 (42.7%) were harboring at least one pathogen with R. felis being the most common (19.4%), followed by Bartonella spp. (16.5%), Rickettsia asembonensis (10.9%) and "Candidatus Rickettsia senegalensis" (0.4%). Furthermore, 35 Rhipicephalus sanguineus ticks were subjected to phylogenetic analysis, of which 34 ticks belonged to the tropical and only one belonged to the temperate lineage (Rh. sanguineus (sensu stricto)).

    CONCLUSION: Our data reveals the circulation of different VBPs in ticks and fleas of dogs and cats from Asia, including zoonotic agents, which may represent a potential risk to animal and human health.

    Matched MeSH terms: Bartonella/genetics
  7. Mokhtar AS, Tay ST
    Am J Trop Med Hyg, 2011 Nov;85(5):931-3.
    PMID: 22049052 DOI: 10.4269/ajtmh.2011.10-0634
    The presence of Rickettsia felis, Bartonella henselae and B. clarridgeiae in 209 fleas (Ctenocephalides felis) obtained from domestic cats and dogs in several locations in Malaysia was investigated in this study. Using a polymerase chain reaction specific for the citrate synthase (gltA) and 17-kD antigenic protein (17kD) genes of rickettsiae, we detected R. felis DNA in 6 (2.9%) fleas. For detection of bartonellae, amplification of the heme-binding protein (pap31) and riboflavin synthase (ribC) genes identified B. henselae and B. clarridgeiae DNA in 24 (11.5%) and 40 (19.1%) fleas, respectively. The DNA of B. henselae and B. clarridgeiae was detected in 10 (4.8%) fleas. Two B. henselae genogroups (Marseille and Houston-1) were detected in this study; genogroup Marseille (genotype Fizz) was found more often in the fleas. The findings in this study suggest fleas as potential vectors of rickettsioses and cat-scratch disease in this country.
    Matched MeSH terms: Bartonella/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links