Displaying all 3 publications

Abstract:
Sort:
  1. Salleh N, Giribabu N
    ScientificWorldJournal, 2014;2014:201514.
    PMID: 25152902 DOI: 10.1155/2014/201514
    Leukaemia inhibitory factor (LIF) plays an indispensible role in embryo implantation. Aberrant LIF production is linked to implantation failure. LIF regulates multiple processes prior to and during implantation such as uterine transformation into a receptive state, decidualization, blastocyst growth and development, embryo-endometrial interaction, trophoblast invasion, and immune modulation. Due to its critical role, LIF has been a target for a nonhormonal contraception. In this review, we summarize up-to-date information on the role of LIF in implantation and its role in contraception.
    Matched MeSH terms: Blastocyst/cytology
  2. Alhelou Y, Mat Adenan NA, Ali J
    Reprod Biol, 2018 Mar;18(1):40-45.
    PMID: 29279181 DOI: 10.1016/j.repbio.2017.12.003
    A parallel group superiority prospective randomised controlled trial was devised to compare the culture characteristics of human pre-implantation stage embryos during uninterrupted culture in a time lapse incubator (TLI) versus the conventional model of interrupted culture in a standard incubator (SI) under low oxygen tension using a single step medium. 221 patients aged 35-and-under, 124 patients aged between 36 and 39 and 86 patients aged 40-and-over years were randomised and cultured either in a SI or in a TLI. Patients in the three age groups were distributed between the TLI and SI in a 1:1 ratio. The development of embryos on days 2, 3 and 5, and the clinical pregnancy and implantation rates were recorded. The fertilisation rate, development of day 2 and clinical pregnancy rates were similar in both treatments but the 8-cell development rate in all age groups combined (p = 0.016), blastocyst development rate (p = 0.0022) and the implantation rate (p = 0.0022) was significantly higher for the uninterrupted culture. These findings demonstrated significant differences between the two incubation groups. It also indicated less efficacious embryonic development with age in both treatments which appeared more pronounced in the conventional incubator. In conclusion uninterrupted culture is superior compared to the interrupted incubation culture system.
    Matched MeSH terms: Blastocyst/cytology
  3. Dasiman R, Rahman NS, Othman S, Mustafa MF, Yusoff NJ, Jusoff WH, et al.
    Med Sci Monit Basic Res, 2013 Oct 04;19:258-66.
    PMID: 24092420 DOI: 10.12659/MSMBR.884019
    BACKGROUND: This study aimed to investigate the effects of vitrification and slow freezing on actin, tubulin, and nuclei of in vivo preimplantation murine embryos at various developmental stages using a Confocal Laser Scanning Microscope (CLSM).

    MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.

    RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.

    CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.

    Matched MeSH terms: Blastocyst/cytology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links