1. Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary lifestyle, conditioned by environmental and genetic factors. Several central and peripheral neurohumoral factors (the major ones being the anorectic adipokines leptin and adiponecin and the orexigenic gut hormone ghrelin) acting on the anorectic (pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript) and orexigenic (neuropeptide Y and agouti gene-related protein) neurons regulate energy balance. These neurons, mainly in the arcuate nucleus of the hypothalamus, project to parts of the brain modulating functions such as wakefulness, autonomic function and learning. A tilt in the anorectic-orexigenic balance, perhaps determined genetically, leads to obesity. 2. Excess fat deposition requires space, created by adipocyte (hypertrophy and hyperplasia) and extracellular matrix (ECM) remodelling. This process is regulated by several factors, including several adipocyte-derived Matrix metalloproteinases and the adipokine cathepsin, which degrades fibronectin, a key ECM protein. Excess fat, also deposited in visceral organs, generates chronic low-grade inflammation that eventually triggers insulin resistance and the associated comorbidities of metabolic syndrome (hypertension, atherosclerosis, dyslipidaemia and diabetes mellitus). 3. The perivascular adipose tissue (PVAT) has conventionally been considered non-physiological structural tissue, but has recently been shown to serve a paracrine function, including the release of adipose-derived relaxant and contractile factors, akin to the role of the vascular endothelium. Thus, PVAT regulates vascular function in vivo and in vitro, contributing to the cardiovascular pathophysiology of the metabolic syndrome. Defining the mechanism of PVAT regulation of vascular reactivity requires more and better controlled investigations than currently seen in the literature.
Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
To understand the effects of substitution patterns on photosensitizing the ability of boron dipyrromethene (BODIPY), two structural variations that either investigate the effectiveness of various iodinated derivatives to maximize the "heavy atom effect" or focus on the effect of extended conjugation at the 4-pyrrolic position to red-shift their activation wavelengths were investigated. Compounds with conjugation at the 4-pyrrolic position were less photocytotoxic than the parent unconjugated compound, while those with an iodinated BODIPY core presented better photocytotoxicity than compounds with iodoaryl groups at the meso-positions. The potency of the derivatives generally correlated well with their singlet oxygen generation level. Further studies of compound 5 on HSC-2 cells showed almost exclusive localization to mitochondria, induction of G(2)/M-phase cell cycle block, and onset of apoptosis. Compound 5 also extensively occluded the vasculature of the chick chorioallantoic membrane. Iodinated BODIPY structures such as compound 5 may have potential as new photodynamic therapy agents for cancer.