Displaying all 2 publications

Abstract:
Sort:
  1. Al-Obaidi MMJ, Desa MNM
    Cell Mol Neurobiol, 2018 Oct;38(7):1349-1368.
    PMID: 30117097 DOI: 10.1007/s10571-018-0609-2
    This review aims to elucidate the different mechanisms of blood brain barrier (BBB) disruption that may occur due to invasion by different types of bacteria, as well as to show the bacteria-host interactions that assist the bacterial pathogen in invading the brain. For example, platelet-activating factor receptor (PAFR) is responsible for brain invasion during the adhesion of pneumococci to brain endothelial cells, which might lead to brain invasion. Additionally, the major adhesin of the pneumococcal pilus-1, RrgA is able to bind the BBB endothelial receptors: polymeric immunoglobulin receptor (pIgR) and platelet endothelial cell adhesion molecule (PECAM-1), thus leading to invasion of the brain. Moreover, Streptococcus pneumoniae choline binding protein A (CbpA) targets the common carboxy-terminal domain of the laminin receptor (LR) establishing initial contact with brain endothelium that might result in BBB invasion. Furthermore, BBB disruption may occur by S. pneumoniae penetration through increasing in pro-inflammatory markers and endothelial permeability. In contrast, adhesion, invasion, and translocation through or between endothelial cells can be done by S. pneumoniae without any disruption to the vascular endothelium, upon BBB penetration. Internalins (InlA and InlB) of Listeria monocytogenes interact with its cellular receptors E-cadherin and mesenchymal-epithelial transition (MET) to facilitate invading the brain. L. monocytogenes species activate NF-κB in endothelial cells, encouraging the expression of P- and E-selectin, intercellular adhesion molecule 1 (ICAM-1), and Vascular cell adhesion protein 1 (VCAM-1), as well as IL-6 and IL-8 and monocyte chemoattractant protein-1 (MCP-1), all these markers assist in BBB disruption. Bacillus anthracis species interrupt both adherens junctions (AJs) and tight junctions (TJs), leading to BBB disruption. Brain microvascular endothelial cells (BMECs) permeability and BBB disruption are induced via interendothelial junction proteins reduction as well as up-regulation of IL-1α, IL-1β, IL-6, TNF-α, MCP-1, macrophage inflammatory proteins-1 alpha (MIP1α) markers in Staphylococcus aureus species. Streptococcus agalactiae or Group B Streptococcus toxins (GBS) enhance IL-8 and ICAM-1 as well as nitric oxide (NO) production from endothelial cells via the expression of inducible nitric oxide synthase (iNOS) enhancement, resulting in BBB disruption. While Gram-negative bacteria, Haemophilus influenza OmpP2 is able to target the common carboxy-terminal domain of LR to start initial interaction with brain endothelium, then invade the brain. H. influenza type b (HiB), can induce BBB permeability through TJ disruption. LR and PAFR binding sites have been recognized as common routes of CNS entrance by Neisseria meningitidis. N. meningitidis species also initiate binding to BMECs and induces AJs deformation, as well as inducing specific cleavage of the TJ component occludin through the release of host MMP-8. Escherichia coli bind to BMECs through LR, resulting in IL-6 and IL-8 release and iNOS production, as well as resulting in disassembly of TJs between endothelial cells, facilitating BBB disruption. Therefore, obtaining knowledge of BBB disruption by different types of bacterial species will provide a picture of how the bacteria enter the central nervous system (CNS) which might support the discovery of therapeutic strategies for each bacteria to control and manage infection.
    Matched MeSH terms: Blood-Brain Barrier/microbiology*
  2. Rahman NA, Sharudin A, Diah S, Muharram SH
    Microb Pathog, 2017 Sep;110:352-358.
    PMID: 28711510 DOI: 10.1016/j.micpath.2017.07.021
    INTRODUCTION: Pneumococcal infections have caused morbidity and mortality globally. Streptococcus pneumoniae (pneumococci) are commensal bacteria that colonize the nasopharynx, asymptomatically. From there, pneumococci can spread in the lungs causing pneumonia and disseminate in the bloodstream causing bacteremia (sepsis) and reach the brain leading to meningitis. Endothelial cells are one of the most important components of the blood-brain barrier that separates the blood from the brain and plays the first protective role against pneumococcal entry. Thus this study aimed to investigate on the ability of non-meningitis pneumococcal clinical strains to adhere and invade a brain endothelium model.

    METHODS: Two pneumococcal Brunei clinical strains were serotyped by multiplex PCR method using oligonucleotide sequences derived from Centers for Disease Control and Prevention. A validated immortalised mouse brain endothelial cell line (bEnd.3) was used as a brain endothelium model for the study of the pneumococcal breach of the blood-brain barrier using an adherence and invasion assay.

    RESULTS: Both of the pneumococcal clinical strains were found to be serotype 19F, a common circulating serotype in Southeast Asia and globally and possess the ability to adhere and invade the brain endothelial cells.

    CONCLUSION: In addition, this is the first report on the serotype identification of pneumococci in Brunei Darussalam and their application on a brain endothelium model. Further studies are required to understand the virulence capabilities of the clinical strains.

    Matched MeSH terms: Blood-Brain Barrier/microbiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links