Of the seventy cases of cerebral malaria seen at the Duchess of Kent Hospital, Sandakan between January 1984 and June 1986, 57 (81.4%) were due to plasmodia falciparum and 13 (18.6%) were due to mixed p. vivax--p. falciparum infections. Mixed infection cerebral malaria was associated with a more severe anaemia and may carry a poorer prognosis. Indigenous children under five years of age are particularly at risk of death from mixed infections.
A patient with severe hyponatreamia secondary to chronic renal failure was treated with peritoneal dialysis (PD). On the third day of admission, she developed progressive obtundation. Neurological examination showed bilateral brisk reflexes with intact brain stem reflexes. Magnetic resonance imaging demonstrated patchy demyelination of the pontine area indicating central pontine myelinolysis (CPM). Despite supportive measures, the patient died on the fifteenth day of admission. The rate of correction of hyponatraemia with peritoneal dialysis can be rapid and detrimental to hyponatraemic chronic renal failure patients and careful monitoring of serum sodium level is advocated.
Inborn errors of metabolism can cause epileptic encephalopathies. Biallelic loss-of-function variants in the ITPA gene, encoding inosine triphosphate pyrophosphatase (ITPase), have been reported in epileptic encephalopathies with lack of myelination of the posterior limb of the internal capsule, brainstem tracts, and tracts to the primary visual and motor cortices (MIM:616647). ITPase plays an important role in purine metabolism. In this study, we identified two novel homozygous ITPA variants, c.264-1 G > A and c.489-1 G > A, in two unrelated consanguineous families. The probands had epilepsy, microcephaly with characteristic magnetic resonance imaging findings (T2 hyperintensity signals in the pyramidal tracts of the internal capsule, delayed myelination, and thin corpus callosum), hypotonia, and developmental delay; both died in early infancy. Our report expands the knowledge of clinical consequences of biallelic ITPA variants.