Displaying all 2 publications

Abstract:
Sort:
  1. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
    Matched MeSH terms: Brugia pahangi/immunology*
  2. Abdullah WO, Oothuman P, Yunus H
    PMID: 7973943
    In Peninsular Malaysia, only Wuchereria bancrofti and Brugia malayi are reported to cause human filariasis. Brugia pahangi infects many of the same animal hosts as the zoonotically transmitted subperiodic B. malayi. There is a well-recognized need for improved diagnostic techniques for lymphatic filariasis. Parasite antigen detection is a promising new approach, and it will probably prove to be more sensitive and specific than clinical, microscopic and antibody-based serological methods. We recently generated monoclonal antibodies (MAb XC3) from in vitro culture products of adult B. pahangi (B.p. IVP). Filarial antigenemia was quantitated in various hosts including the sera from 6 Malaysian Aborigines with acute lymphatic filariasis. In hosts infected with brugian filariasis and dirofilariasis, antigenemia was scored ranging from 90 ng/ml to 960 ng/ml. None of the control animal and human sera had antigenemia above 90 ng/ml. In addition, MAb XC3 and B.p. IVP were applied in several seroepidemiological surveys among household cats in Kuala Selangor in order to correlate information gathered for future studies of possible cases of human infection. Out of the 81 cats surveyed, 10 (12.35%) and 5 (6.17%) were parasitologically positive for B. pahangi and B. malayi, respectively. However, 21 (25.92%) were antigenemia positive when serologically investigated with MAb XC3. Antifilarial antibodies to B.p. IVP by direct ELISA showed very high cross-reactivity with non-filarial gut worm infections. 16 (19.75%) cats had reciprocal titers ranging from 320 to 2,560. Only 1 (1.23%) cat from this group was antigenemic.
    Matched MeSH terms: Brugia pahangi/immunology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links