Displaying all 2 publications

Abstract:
Sort:
  1. Siti Kamilah Che Soh, Siti Aminah Jusoh, Mustaffa Shamsuddin
    MyJurnal
    A polystyrene (PS)-anchored Pd(II) metal complex was synthesized on cross-linked polymer by heating a mixture of chlorometylated polystyrene with phenyldithiocarbazate and carbon disulfide in the presence of potassium hydroxide (KOH) in dimethylformamide (DMF). The reaction mixture was heated at 80 °C to form the corresponding phenyldithiocarbazate-functionalized polymer. Then, it was treated with bis(benzonitrile)palladium(II) chloride. The properties of dark colored polymer, impregnated with the metal complex was then characterized by various spectroscopic technique such as Fourier Transform Infrared (FTIR), Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDX), CHNS elemental analysis, BET surface area, X-ray Diffraction (XRD), Thermogravimetric (TGA) and Inductively Coupled Plasma-Optical Emission (ICP-OES) spectroscopy.
    Matched MeSH terms: Carbon Disulfide
  2. Abbasi MA, Ramzan MS, Ur-Rehman A, Siddiqui SZ, Hassan M, Ali Shah SA, et al.
    Iran J Pharm Res, 2020;19(1):487-506.
    PMID: 32922502 DOI: 10.22037/ijpr.2019.13084.11362
    The synthesis of a novel series of bi-heterocyclic propanamides, 7a-l, was accomplished by S-substitution of 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). The synthesis was initiated from ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (1) which was converted to corresponding hydrazide, 2, by hydrazine hydrate in methanol. The refluxing of hydrazide, 2, with carbon disulfide in basic medium, resulted in 5-[(2-amino-1,3-thiazol-4-yl)methyl]-1,3,4-oxadiazol-2-thiol (3). A series of electrophiles, 6a-l, was synthesized by stirring un/substituted anilines (4a-l) with 3-bromopropanoyl chloride (5) in a basic aqueous medium. Finally, the targeted compounds, 7a-l, were acquired by stirring 3 with newly synthesized electrophiles, 6a-l, in DMF using LiH as a base and an activator. The structures of these bi-heterocyclic propanamides were confirmed through spectroscopic techniques, such as IR, 1H-NMR, 13C-NMR, and EI-MS. These molecules were tested for their urease inhibitory potential, whereby, the whole series exhibited very promising activity against this enzyme. Their cytotoxic behavior was ascertained through hemolysis and it was observed that all these were less cytotoxic agents. The in-silico molecular docking analysis of these molecules was also in full agreement with their in-vitro enzyme inhibition data.
    Matched MeSH terms: Carbon Disulfide
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links