Phenanthrene degradation by Polyporus sp. S133, a new phenanthrene-degrading strain, was investigated in this work. The analysis of degradation was performed by calculation of the remaining phenanthrene by gas chromatography-mass spectrometry. When cells were grown in phenanthrene culture after 92 h, all but 200 and 250 mg/l of the phenanthrene had been degraded. New metabolic pathways of phenanthrene and a better understanding of the phenoloxidases and dioxygenase mechanism involved in degradation of phenanthrene were explored in this research. The mechanism of degradation was determined through identification of the several metabolites; 9,10-phenanthrenequinone, 2,2'-diphenic acid, salicylic acid, and catechol. 9,10-Oxidation and ring cleavage to give 9,10-phenanthrenequinone is the major fate of phenanthrene in ligninolytic Polyporus sp. S133. The identification of 2,2'-diphenic acid in culture extracts indicates that phenanthrene was initially attacked through dioxigenation at C9 and C10 to give cis-9,10-dihydrodiol. Dehydrogenation of phenanthrene-cis-9,10-dihydrodiol to produce the corresponding diol, followed by ortho-cleavage of the oxygenated ring, produced 2,2'-diphenic acid. Several enzymes (manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase, and 2,3-dioxygenase) produced by Polyporus sp. S133 was detected during the incubation. The highest level of activity was shown at 92 h of culture.
Lignin depolymerization for the purpose of synthesizing aromatic molecules is a growing focus of research to find alternative energy sources. In current studies, the photocatalytic depolymerization of lignin has been investigated by two new iso-propylamine-based lead chloride perovskite nanomaterials (SK9 and SK10), synthesized by the facile hydrothermal method. Characterization was done by Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), UV-Visible (UV-Vis), Photoluminescence (PL), and Fourier-Transform Infrared (FTIR) Spectroscopy and was used for the photocatalytic depolymerization of lignin under UV light. Lignin depolymerization was monitored by taking absorption spectra and catalytic paths studied by applying kinetic models. The %depolymerization was calculated for factors such as catalyst dose variation, initial concentration of lignin, and varying temperatures. Pseudo-second order was the best suited kinetic model, exhibiting a mechanism for lignin depolymerization that was chemically rate controlled. The activation energy (Ea) for the depolymerization reaction was found to be 15 kJ/mol, which is remarkably less than conventional depolymerization of the lignin, i.e., 59.75 kJ/mol, exhibiting significant catalytic efficiencies of synthesized perovskites. Products of lignin depolymerization obtained after photocatalytic activity at room temperature (20 °C) and at 90 °C were characterized by GC-MS analysis, indicating an increase in catalytic lignin depolymerization structural subunits into small monomeric functionalities at higher temperatures. Specifically, 2-methoxy-4-methylphenol (39%), benzene (17%), phenol (10%) and catechol (7%) were detected by GC-MS analysis of lignin depolymerization products.
Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.