Displaying all 2 publications

Abstract:
Sort:
  1. Helali AM, Iti FM, Mohamed IN
    Curr Drug Targets, 2013 Dec;14(13):1591-600.
    PMID: 23957815
    Osteoporosis is a pathologic process characterized by low bone mass with skeletal fragility and an increased risk of fracture. It occurs due to an imbalance between bone resorption and formation. Although current antiresorptive therapy halts bone loss, it does not cure the condition as it also inhibits bone formation. Recent preclinical and clinical trials suggest that the inhibition of resorption by cathepsin K inhibitors increases bone formation. Cathepsin K is a papainlike cysteine protease with high potent collagenase activity and predominantly expressed in osteoclasts. While allowing demineralization, cathepsin K inhibitors suppress the degradation of type I collagen (the major organic matrix of bone) and thus enhancing bone formation. Many of these inhibitors have passed preclinical studies and are presently in clinical trials at different stages of advancement. This review explores the promising role of cathepsin K as a novel antiresorptive for the treatment of osteoporosis.
    Matched MeSH terms: Cathepsin K/metabolism
  2. Daood U, Tsoi JKH, Neelakantan P, Matinlinna JP, Omar HAK, Al-Nabulsi M, et al.
    Dent Mater, 2018 08;34(8):1175-1187.
    PMID: 29779627 DOI: 10.1016/j.dental.2018.05.005
    OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive.

    METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA.

    RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties.

    SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.

    Matched MeSH terms: Cathepsin K/metabolism
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links