In August, 1980 a rare serotype S. zanzibar was isolated in the North of Scotland from a man home on leave from Malaysia, whence he returned in November having been bacteriologically negative 2 months previously. In December however, S. zanzibar was isolated from a bulk milk sample taken at a nearby dairy farm. No illness occurred among milking cows which had been brought inside from pasture in mid-October. Since 1972 a variety of different salmonella serotypes had been identified in cattle, milk and other samples at this farm, with seagulls being implicated as the vector transmitting infection from the sewage of a local town on to farmland and an adjacent loch. Although water from this source has not been used in recent years for drinking by cattle, it is utilized for washing floors within the dairy premises. Since 1979, following an outbreak affecting consumers, all milk produced at the farm has been pasteurized.
Bartonellosis is an emerging zoonotic infection responsible for a variety of clinical syndromes in humans and animals. Members of the genus Bartonella exhibit high degrees of genetic diversity and ecologic plasticity. The infection is usually transmitted to animals and humans through blood-feeding arthropod vectors such as fleas, lice, ticks and sandflies. This study was conducted to investigate the prevalence of Bartonella species in 184 beef cattle, 40 dairy cattle, 40 sheep and 40 goats in eight animal farms across Peninsular Malaysia. Bartonella-specific PCR assays and sequence analysis of partial fragments of the citrate synthase gene were used for detection and identification of B. bovis. Isolation of B. bovis was attempted from PCR-positive blood samples. Molecular heterogeneity of the isolates was investigated based on sequence analysis of gltA, ITS, rpoB genes, ERIC-PCR, as well as using an established multilocus sequence typing (MLST) method. The carriage rate of B. bovis in ticks was also determined in this study.
Traceback systems in most countries of Asia are not well developed, as indicated by responses to a questionnaire by veterinary officials in thirteen countries. Marking of animals for traceback is practised only in a limited number of countries in specific areas or zones and for specific purposes only. In Malaysia, traceback has been undertaken by marking farm code tattoos on pigs. This enables the identification of the farm of origin of pigs found to be infected by Nipah virus in sero-surveillance programmes. The origin of the foot and mouth disease (FMD) virus that surfaced in the Republic of Korea in March 2000 was investigated through several epidemiological studies of suspected sources of contamination such as imported hay, yellow sand, milk collection trucks and feed delivery trucks. None of these studies gave results that indicated the origin of the FMD virus. The origin of the FMD virus that was recorded in Japan in March 2000 was also investigated in epidemiological studies; in this case, imported wheat straw was incriminated as the most likely source of infection. Comparative studies of the pathogenicities of FMD (type O) viruses isolated in Taipei China, the Republic of Korea and Japan, suggest that these viruses might have originated as vaccine strains used in a third country.
In order to attempt isolate the protozoan parasite Neospora caninum, an N. caninum seropositive pregnant Sahiwal Friesian cross heifer from a large-scale dairy farm in Malaysia was kept for observation until parturition at the Veterinary Research Institute, Ipoh. The heifer gave birth to a female calf that was weak, underweight and unable to rise. Precolostral serum from the calf had an N. caninum indirect fluorescent antibody test titre of 1:3200. It died 12 h after birth and necropsy was performed. Brain homogenate from the calf was inoculated into 10 BALB/c mice that were kept for 3 months after which brain tissue from the mice was inoculated onto 24 h fresh monolayer Vero cell lines. The cell cultures were examined daily until growth of intracellular protozoa was observed. DNA of the organisms from the cell cultures was analyzed by PCR and DNA sequencing. DNA fragments of the expected size were amplified from the isolate using N. caninum-specific primers, and sequence analysis of ITS1 clearly identified the isolate as N. caninum. This is the first successful isolation of N. caninum from a bovine in Malaysia, and the isolate is designated Nc-MalB1.
Specific Escherichia coli isolates lysogenised with prophages that express Shiga toxin (Stx) can be a threat to human health, with cattle being an important natural reservoir. In many countries the most severe pathology is associated with enterohaemorrhagic E. coli (EHEC) serogroups that express Stx subtype 2a. In the United Kingdom, phage type (PT) 21/28 O157 strains have emerged as the predominant cause of life-threatening EHEC infections and this phage type commonly encodes both Stx2a and Stx2c toxin types. PT21/28 is also epidemiologically linked to super-shedding (>103 cfu/g of faeces) which is significant for inter-animal transmission and human infection as demonstrated using modelling studies. We demonstrate that Stx2a is the main toxin produced by stx2a+/stx2c+ PT21/28 strains induced with mitomycin C and this is associated with more rapid induction of gene expression from the Stx2a-encoding prophage compared to that from the Stx2c-encoding prophage. Bacterial supernatants containing either Stx2a and/or Stx2c were demonstrated to restrict growth of bovine gastrointestinal organoids with no restriction when toxin production was not induced or prevented by mutation. Isogenic strains that differed in their capacity to produce Stx2a were selected for experimental oral colonisation of calves to assess the significance of Stx2a for both super-shedding and transmission between animals. Restoration of Stx2a expression in a PT21/28 background significantly increased animal-to-animal transmission and the number of sentinel animals that became super-shedders. We propose that while both Stx2a and Stx2c can restrict regeneration of the epithelium, it is the relatively rapid and higher levels of Stx2a induction, compared to Stx2c, that have contributed to the successful emergence of Stx2a+ E. coli isolates in cattle in the last 40 years. We propose a model in which Stx2a enhances E. coli O157 colonisation of in-contact animals by restricting regeneration and turnover of the colonised gastrointestinal epithelium.