Displaying all 3 publications

Abstract:
Sort:
  1. Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM
    J Biomol Struct Dyn, 2017 06;35(8):1685-1692.
    PMID: 27206405 DOI: 10.1080/07391102.2016.1191043
    Matched MeSH terms: Cellulases/genetics
  2. Obeng EM, Brossette T, Ongkudon CM, Budiman C, Maas R, Jose J
    Appl Microbiol Biotechnol, 2018 Jun;102(11):4829-4841.
    PMID: 29675801 DOI: 10.1007/s00253-018-8987-4
    This article comparatively reports the workability of Escherichia coli BL21(DE3) and Pseudomonas putida KT2440 cell factories for the expression of three model autodisplayed cellulases (i.e., endoglucanase, BsCel5A; exoglucanase, CelK; β-glucosidase, BglA). The differentiation of the recombinant cells was restricted to their cell growth and enzyme expression/activity attributes. Comparatively, the recombinant E. coli showed higher cell growth rates but lower enzyme activities than the recombinant P. putida. However, the endo-, exoglucanase, and β-glucosidase on the surfaces of both cell factories showed activity over a broad range of pH (4-10) and temperature (30-100 °C). The pH and temperature optima were pH 6, 60 °C (BsCel5A); pH 6, 60-70 °C (CelK); and pH 6, 50 °C (BglA). Overall, the P. putida cell factory with autodisplayed enzymes demonstrated higher bioactivity and remarkable biochemical characteristics and thus was chosen for the saccharification of filter paper. A volumetric blend of the three cellulases with P. putida as the host yielded a ratio of 1:1:1.5 of endoglucanase, exoglucanase, and β-glucosidase, respectively, as the optimum blend composition for filter paper degradation. At an optical density (578 nm) of 50, the blend generated a maximum sugar yield of about 0.7 mg/ml (~ 0.08 U/g) from Whatman filter paper (Ø 6 mm, ~ 2.5 mg) within 24 h.
    Matched MeSH terms: Cellulases/genetics*
  3. An H, Ching XH, Cheah WJ, Lim WL, Ee KY, Chong CS, et al.
    Folia Microbiol (Praha), 2025 Feb;70(1):71-82.
    PMID: 38842626 DOI: 10.1007/s12223-024-01178-9
    Halophilic bacteria are extremophiles that thrive in saline environment. Their ability to withstand such harsh conditions makes them an ideal choice for industrial applications such as lignocellulosic biomass degradation. In this study, a halophilic bacterium with the ability to produce extracellular cellulases and hemicellulases, designated as Nesterenkonia sp. CL21, was isolated from mangrove sediment in Tanjung Piai National Park, Malaysia. Thus far, studies on lignocellulolytic enzymes concerning bacterial species under this genus are limited. To gain a comprehensive understanding of its lignocellulose-degrading potential, the whole genome was sequenced using the Illumina NovaSeq 6000 platform. The genome of strain CL21 was assembled into 25 contigs with 3,744,449 bp and a 69.74% GC content and was predicted to contain 3,348 coding genes. Based on taxonomy analysis, strain CL21 shares 73.8 to 82.0% average nucleotide identity with its neighbouring species, below the 95% threshold, indicating its possible status as a distinct species in Nesterenkonia genus. Through in-depth genomic mining, a total of 81 carbohydrate-active enzymes were encoded. Among these, 24 encoded genes were identified to encompass diverse cellulases (GH3), xylanases (GH10, GH11, GH43, GH51, GH127 and CE4), mannanases (GH38 and GH106) and pectinases (PL1, PL9, and PL11). The production of lignocellulolytic enzymes was tested in the presence of several substrates. This study revealed that strain CL21 can produce a diverse array of enzymes which are active at different time points. By combining experimental data with genomic information, the ability of strain CL21 to produce lignocellulolytic enzymes has been elucidated, with potential applications in biorefinery industry.
    Matched MeSH terms: Cellulases/genetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links