Displaying all 3 publications

Abstract:
Sort:
  1. Lim SY, Tham PY, Lim HYL, Heng WS, Chang YP
    J Food Sci, 2018 Jun;83(6):1522-1532.
    PMID: 29745989 DOI: 10.1111/1750-3841.14155
    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study.

    PRACTICAL APPLICATION: To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them.

    Matched MeSH terms: Cholic Acid/metabolism
  2. Amjad MW, Amin MC, Katas H, Butt AM
    Nanoscale Res Lett, 2012;7(1):687.
    PMID: 23270381 DOI: 10.1186/1556-276X-7-687
    Doxorubicin-loaded micelles were prepared from a copolymer comprising cholic acid (CA) and polyethyleneimine (PEI) for the delivery of antitumor drugs. The CA-PEI copolymer was synthesized via pairing mediated by N,N'-dicyclohexylcarbodiimide and N-hydroxysuccinimide using dichloromethane as a solvent. Fourier transform infrared and nuclear magnetic resonance analyses were performed to verify the formation of an amide linkage between CA and PEI and doxorubicin localization into the copolymer. Dynamic light scattering and transmission electron microscopy studies revealed that the copolymer could self-assemble into micelles with a spherical morphology and an average diameter of <200 nm. The CA-PEI copolymer was also characterized by X-ray diffraction and differential scanning calorimetry. Doxorubicin-loaded micelles were prepared by dialysis method. A drug release study showed reduced drug release with escalating drug content. In a cytotoxicity assay using human colorectal adenocarcinoma (DLD-1) cells, the doxorubicin-loaded CA-PEI micelles exhibited better antitumor activity than that shown by doxorubicin. This is the first study on CA-PEI micelles as doxorubicin carriers, and this study demonstrated that they are promising candidates as carriers for sustained targeted antitumor drug delivery system.
    Matched MeSH terms: Cholic Acid
  3. Amjad MW, Amin MC, Katas H, Butt AM, Kesharwani P, Iyer AK
    Mol Pharm, 2015 Dec 7;12(12):4247-58.
    PMID: 26567518 DOI: 10.1021/acs.molpharmaceut.5b00827
    Multidrug resistance poses a great challenge to cancer treatment. In order to improve the targeting and codelivery of small interfering RNA (siRNA) and doxorubicin, and to overcome multidrug resistance, we conjugated a cholic acid-polyethylenimine polymer with folic acid, forming CA-PEI-FA micelles. CA-PEI-FA exhibited a low critical micelle concentration (80 μM), small average particle size (150 nm), and positive zeta potential (+ 12 mV). They showed high entrapment efficiency for doxorubicin (61.2 ± 1.7%, w/w), forming D-CA-PEI-FA, and for siRNA, forming D-CA-PEI-FA-S. X-ray photoelectron spectroscopic analysis revealed the presence of external FA on D-CA-PEI-FA micelles. About 25% doxorubicin was released within 24 h at pH 7.4, while more than 30% release was observed at pH 5. The presence of FA enhanced micelle antitumor activity. The D-CA-PEI-FA and D-CA-PEI-FA-S micelles inhibited tumor growth in vivo. No significant differences between their in vitro cytotoxic activities or their in vivo antitumor effects were observed, indicating that the siRNA coloading did not significantly increase the antitumor activity. Histological analysis revealed that tumor tissues from mice treated with D-CA-PEI-FA or D-CA-PEI-FA-S showed the lowest cancer cell density and the highest levels of apoptosis and necrosis. Similarly, the livers of these mice exhibited the lowest level of dihydropyrimidine dehydrogenase among all treated groups. The lowest serum vascular endothelial growth factor level (VEGF) (24.4 pg/mL) was observed in mice treated with D-CA-PEI-FA-S micelles using siRNA targeting VEGF. These findings indicated that the developed CA-PEI-FA nanoconjugate has the potential to achieve targeted codelivery of drugs and siRNA.
    Matched MeSH terms: Cholic Acid
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links