Affiliations 

  • 1 Center for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia , Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
  • 2 Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
Mol Pharm, 2015 Dec 7;12(12):4247-58.
PMID: 26567518 DOI: 10.1021/acs.molpharmaceut.5b00827

Abstract

Multidrug resistance poses a great challenge to cancer treatment. In order to improve the targeting and codelivery of small interfering RNA (siRNA) and doxorubicin, and to overcome multidrug resistance, we conjugated a cholic acid-polyethylenimine polymer with folic acid, forming CA-PEI-FA micelles. CA-PEI-FA exhibited a low critical micelle concentration (80 μM), small average particle size (150 nm), and positive zeta potential (+ 12 mV). They showed high entrapment efficiency for doxorubicin (61.2 ± 1.7%, w/w), forming D-CA-PEI-FA, and for siRNA, forming D-CA-PEI-FA-S. X-ray photoelectron spectroscopic analysis revealed the presence of external FA on D-CA-PEI-FA micelles. About 25% doxorubicin was released within 24 h at pH 7.4, while more than 30% release was observed at pH 5. The presence of FA enhanced micelle antitumor activity. The D-CA-PEI-FA and D-CA-PEI-FA-S micelles inhibited tumor growth in vivo. No significant differences between their in vitro cytotoxic activities or their in vivo antitumor effects were observed, indicating that the siRNA coloading did not significantly increase the antitumor activity. Histological analysis revealed that tumor tissues from mice treated with D-CA-PEI-FA or D-CA-PEI-FA-S showed the lowest cancer cell density and the highest levels of apoptosis and necrosis. Similarly, the livers of these mice exhibited the lowest level of dihydropyrimidine dehydrogenase among all treated groups. The lowest serum vascular endothelial growth factor level (VEGF) (24.4 pg/mL) was observed in mice treated with D-CA-PEI-FA-S micelles using siRNA targeting VEGF. These findings indicated that the developed CA-PEI-FA nanoconjugate has the potential to achieve targeted codelivery of drugs and siRNA.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.