Displaying all 3 publications

Abstract:
Sort:
  1. Ahmed MF, Mokhtar MB
    PMID: 32344678 DOI: 10.3390/ijerph17082966
    Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly from natural sources, human activities have increased their concentrations. Several studies have reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however, the association between metal ingestion via drinking water and human health risk has not been established. This study collected water samples from four stages of the drinking water supply chain at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004-2014) of these metals were significantly within the safe limit of drinking water quality standard proposed by the Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin, high concentrations of these metals have been found in household tap water, especially due to the contamination in the water distribution pipeline. Therefore, a two-layer water filtration system should be introduced in the basin to achieve the United Nations Sustainable Development Goals (SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying safe drinking water at the household level.
    Matched MeSH terms: Chromium/toxicity
  2. Rambabu K, Bharath G, Banat F, Show PL
    Environ Res, 2020 08;187:109694.
    PMID: 32485359 DOI: 10.1016/j.envres.2020.109694
    Biosorption ability of date palm empty fruit bunch (DPEFB) was examined for the removal of toxic hexavalent chromium (Cr6+) ions from synthetic wastewater. The pretreated DPEFB biosorbent was studied for its morphology and surface chemistry through Scanning electron microscopy, Energy dispersive elemental analysis and Fourier transform infrared spectroscopy. Effect of biosorption parameters such as pH, biosorbent dosage, contact time, temperature, initial feed concentration and agitation speed on the Cr6+ ions removal efficiency by DPEFB was critically evaluated. The isoelectric point for the DPEFB sorbent was observed at pH 2, above which it was dehydronated to capture the positively charged Cr6+ ions. Batch biosorption studies showed that an optimal chromium removal efficiency of 58.02% was recorded by the DPEFB biosorbent for pH 2, dosage 0.3 g, 100 rpm agitation speed, 120 min contact time, 50 mg/L initial feed concentration and 30 °C operational temperature. Thermodynamic analysis showed that the binding of Cr6+ ions on DPEFB surface was exothermic, stable and favorable at room temperature. Equilibrium behavior of chromium binding on DPEFB was more aligned to Temkin isotherm (R2 = 0.9852) highlighting the indirect interactions between Cr6+ ions and the biosorbent. Kinetic modeling revealed that the biosorption of Cr6+ ions by DPEFB obeyed pseudo-second order model than the pseudo-first order and intra-particle diffusion models. Reusability studies of the DPEFB sorbent showed that NaNO3 was an effective regenerant and the biosorbent can be efficiently reused up to three successive biosorption-desorption cycles for chromium removal. In summary, the results clearly showed that the DPEFB biowaste seems to be an efficient, economic and eco-friendly biosorbent for sustainable removal of toxic hexavalent chromium ions from domestic and industrial wastewater streams.
    Matched MeSH terms: Chromium/toxicity
  3. Choo TP, Lee CK, Low KS, Hishamuddin O
    Chemosphere, 2006 Feb;62(6):961-7.
    PMID: 16081131
    This study describes an investigation using tropical water lilies (Nymphaea spontanea) to remove hexavalent chromium from aqueous solutions and electroplating waste. The results show that water lilies are capable of accumulating substantial amount of Cr(VI), up to 2.119 mg g(-1) from a 10 mg l(-1) solution. The roots of the plant accumulated the highest amount of Cr(VI) followed by leaves and petioles, indicating that roots play an important role in the bioremediation process. The maturity of the plant exerts a great effect on the removal and accumulation of Cr(VI). Plants of 9 weeks old accumulated the most Cr(VI) followed by those of 6 and 3 weeks old. The results also show that removal of Cr(VI) by water lilies is more efficient when the metal is present singly than in the presence of Cu(II) or in waste solution. This may be largely associated with more pronounced phytotoxicity effect on the biochemical changes in the plants and saturation of binding sites. Significant toxicity effect on the plant was evident as shown in the reduction of chlorophyll, protein and sugar contents in plants exposed to Cr(VI) in this investigation.
    Matched MeSH terms: Chromium/toxicity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links