Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.
Three newly discovered H2 producing bacteria namely Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY originated from landfill leachate sludge have demonstrated highly efficient H2 production. The maximum H2 production attained from these isolates are in the descending order of strain C. perfringens strain JJC > C. bifermentans strain WYM > Clostridium sp. strain Ade.TY with yield of 4.68 ± 0.12, 3.29 ± 0.11, and 2.87 ± 0.10 mol H2/mol glucose, respectively. The result has broken the conventional theoretical yield of 4 mol H2/mol glucose. These isolates were thermodynamically favourable with Gibbs free energy between -33 and -35 kJ/mol (under process conditions: pH 6, 37 °C and 5 g/L glucose). All three isolates favour butyrate pathway for H2 production with the ratio of acetate and butyrate of 0.77, 0.65 and 0.80 for strain JJC, WYM and Ade.TY, respectively. This study reported provides a new insight on the potential of unique bacteria in H2 production.
The management and control of mosquito vectors of human disease currently rely primarily on chemical insecticides. However, larvicidal treatments can be effective, and if based on biological insecticides, they can also ameliorate the risk posed to human health by chemical insecticides. The aerobic bacteria Bacillus thuringiensis and Lysinibacillus sphaericus have been used for vector control for a number of decades. But a more cost-effective use would be an anaerobic bacterium because of the ease with which these can be cultured. More recently, the anaerobic bacterium Clostridium bifermentans subsp. malaysia has been reported to have high mosquitocidal activity, and a number of proteins were identified as potentially mosquitocidal. However, the cloned proteins showed no mosquitocidal activity. We show here that four toxins encoded by the Cry operon, Cry16A, Cry17A, Cbm17.1, and Cbm17.2, are all required for toxicity, and these toxins collectively show remarkable selectivity for Aedes rather than Anopheles mosquitoes, even though C. bifermentans subsp. malaysia is more toxic to Anopheles. Hence, toxins that target Anopheles are different from those expressed by the Cry operon.