Displaying all 3 publications

Abstract:
Sort:
  1. Suhaimi FW, Yusoff NH, Hassan R, Mansor SM, Navaratnam V, Müller CP, et al.
    Brain Res Bull, 2016 09;126(Pt 1):29-40.
    PMID: 27018165 DOI: 10.1016/j.brainresbull.2016.03.015
    Kratom or its main alkaloid, mitragynine is derived from the plant Mitragyna speciosa Korth which is indigenous to Southeast Asian countries. This substance has become widely available in other countries like Europe and United States due to its opium- and coca-like effects. In this article, we have reviewed available reports on mitragynine and other M. speciosa extracts. M. speciosa has been proven to have a rewarding effect and is effective in alleviating the morphine and ethanol withdrawal effects. However, studies in human revealed that prolonged consumption of this plant led to dependence and tolerance while cessation caused a series of aversive withdrawal symptoms. Findings also showed that M. speciosa extracts possess antinociceptive, anti-inflammatory, anti-depressant, and muscle relaxant properties. Available evidence further supports the adverse effects of M. speciosa preparations, mitragynine on cognition. Pharmacological activities are mainly mediated via opioid receptors as well as neuronal Ca2+ channels, expression of cAMP and CREB protein and via descending monoaminergic system. Physicochemical properties of mitragynine have been documented which may further explain the variation in pharmacological responses. In summary, current researchs on its main indole alkaloid, mitragynine suggest both therapeutic and addictive potential but further research on its molecular effects is needed.
    Matched MeSH terms: Cognition Disorders/chemically induced
  2. Singh JC, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SS, Diwan PV
    Pharm Biol, 2015 May;53(5):630-6.
    PMID: 25472801 DOI: 10.3109/13880209.2014.935866
    Vanillic acid (VA), a flavoring agent used in food and drug products, obtained naturally from the plant Angelica sinensis (Oliv.) Diels (Apiaceae), used in the traditional Chinese medicine. It is reported to possess strong antioxidant, anti-inflammatory, and neuroprotective effects. However, the pharmacological effects on oxidative stress-induced neurodegeneration are not well investigated.
    Matched MeSH terms: Cognition Disorders/chemically induced
  3. Bharti K, Majeed AB, Prakash A
    Biometals, 2016 Jun;29(3):399-409.
    PMID: 26923568 DOI: 10.1007/s10534-016-9922-8
    Metal ionophores are considered as potential anti-dementia agents, and some are currently undergoing clinical trials. Many metals are known to accumulate and distribute abnormally in the aging brain. Alterations in zinc metal homeostasis in the glutaminergic synapse could contribute to ageing and the pathophysiology of Alzheimer's disease (AD). The present study was designed to investigate the effect of metal ionophores on long term administration of zinc in D-galactose induced senescent mice. The ageing model was established by combined administration of zinc and D-galactose to mice for 6 weeks. A novel metal ionophore, PBT-2 was given daily to zinc-induced d-galactose senescent mice. The cognitive behaviour of mice was monitored using the Morris Water Maze. The anti-oxidant status and amyloidogenic activity in the ageing mouse was measured by determining mito-oxidative parameters and deposition of amyloid β (Aβ) in the brain. Systemic administration of both zinc and D-galactose significantly produced memory deficits, mito-oxidative damage, heightened acetylcholinesterase enzymatic activity and deposition of amyloid-β. Treatment with PBT-2 significantly improved behavioural deficits, biochemical profiles, cellular damage, and curbed the deposition of APP in zinc-induced senescent mice. These findings suggest that PBT-2, acting as a metal protein attenuating compound, may be helpful in the prevention of AD or alleviation of ageing.
    Matched MeSH terms: Cognition Disorders/chemically induced*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links