Displaying all 3 publications

Abstract:
Sort:
  1. Ali A, Wee Pheng T, Mustafa MA
    J Appl Microbiol, 2015 Jun;118(6):1456-64.
    PMID: 25727701 DOI: 10.1111/jam.12782
    To evaluate the potential use of lemongrass essential oil vapour as an alternative for synthetic fungicides in controlling anthracnose of papaya.
    Matched MeSH terms: Colletotrichum/drug effects*
  2. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M
    J Appl Microbiol, 2012 Oct;113(4):925-39.
    PMID: 22805053 DOI: 10.1111/j.1365-2672.2012.05398.x
    To investigate the antifungal activity of conventional chitosan and chitosan-loaded nanoemulsions against anthracnose caused by Colletotrichum spp. isolated from different tropical fruits.
    Matched MeSH terms: Colletotrichum/drug effects*
  3. Nasran HS, Mohd Yusof H, Halim M, Abdul Rahman N
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512825 DOI: 10.3390/molecules25112618
    Anthracnose is a fungal disease causing major losses in crop production. Chemical fungicides widely used in crop plantations to combat fungal infections can be a threat to the environment and humans in the long term. Recently, biofungicides have gained much interest as an alternative to chemical fungicides due to their environmentally friendly nature. Biofungicide products in powder form can be formulated using the freeze-drying technique to provide convenient storage. Protective agent formulation is needed in maintaining the optimal viable cells of biofungicide products. In this study, 8.10 log colony-forming unit (CFU)/mL was the highest cell viability of Paenibacillus polymyxa Kp10 at 22 h during incubation. The effects of several selected protective agents on the viability of P. polymyxa Kp10 after freeze-drying were studied. Response surface methodology (RSM) was used for optimizing formulation for the protective agents. The combination of lactose (10% w/v), skim milk (20% w/v), and sucrose (27.5% w/v) was found to be suitable for preserving P. polymyxa Kp10 during freeze-drying. Further, P. polymyxa Kp10 demonstrated the ability to inhibit fungal pathogens, Colletotrichum truncatum and C. gloeosporioides, at 60.18% and 66.52% of inhibition of radial growth, respectively.
    Matched MeSH terms: Colletotrichum/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links