By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
Forty-five Asian patients (Indians 35, Chinese 8, Malay 2) with histologically proven lichen planus were studied by immunofluorescence. The most characteristic feature, seen in 93% of the cases, was shaggy deposition of fibrinogen along the basement membrane. Immunoglobulin deposition along the basement membrane was notably, absent. Colloid bodies were observed in 87% of the cases. Fibrinogen was the most common immunoreactant, and its presence in colloid bodies was always associated with fibrinogen deposition along the basement membrane zone. Colloid bodies also contained a variety of other immunoreactants. However, staining for IgM was noted to be the most intense. The combination of shaggy deposition of fibrinogen along the basement membrane, in the absence of immunoglobulins, and the presence of colloid bodies around the basement membrane zone, is highly characteristic of lichen planus. The pattern of immunofluorescence among Asians with lichen planus, conforms to that observed in other races. There did not appear to be any difference in the immunofluorescence staining with pattern in the three racial groups studied.