Displaying all 3 publications

Abstract:
Sort:
  1. Jayasimhan S, Yap NY, Roest Y, Rajandram R, Chin KF
    Clin Nutr, 2013 Dec;32(6):928-34.
    PMID: 23561636 DOI: 10.1016/j.clnu.2013.03.004
    Probiotics is an emerging therapeutic agent which may alleviate the symptoms of constipation. We evaluated the effectiveness of microbial cell preparation (Hexbio(®)) containing fructooligosaccharide, Bifidobacterium and Lactobacillus in improving stool frequency and symptoms of chronic constipation.
    Matched MeSH terms: Constipation/microbiology*
  2. Lim YJ, Jamaluddin R, Hazizi AS, Chieng JY
    Nutrients, 2018 Jun 26;10(7).
    PMID: 29949873 DOI: 10.3390/nu10070824
    Synbiotics approach complementarily and synergistically toward the balance of gastrointestinal microbiota and improvement in bowel functions. A randomised, double-blind, placebo-controlled study was conducted to examine the effects of a synbiotics supplement among constipated adults. A total of 85 constipated adults, diagnosed by Rome III criteria for functional constipation were randomised to receive either synbiotics (n = 43) or placebo (n = 42) once daily (2.5 g) in the morning for 12 weeks. Eight times of follow-up was conducted every fortnightly with treatment response based on a questionnaire that included a record of evacuation (stool frequency, stool type according to Bristol Stool Form Scale), Patients Assessment on Constipation Symptoms (PAC-SYM), and Patients Assessment on Constipation Quality of Life (PAC-QOL). There were no significant differences in stool evacuation, but defecation frequency and stool type in treatment group were improved tremendously than in placebo group. While the treatment group was reported to have higher reduction in severity of functional constipation symptoms, the differences were not statistically significant. Dietary supplementation of synbiotics in this study suggested that the combination of probiotics and prebiotics improved the functional constipation symptoms and quality of life although not significant. This was due to the high placebo effect which synbiotics failed to demonstrate benefit over the controls.
    Matched MeSH terms: Constipation/microbiology
  3. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, et al.
    Ann Neurol, 2021 03;89(3):546-559.
    PMID: 33274480 DOI: 10.1002/ana.25982
    OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance.

    METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.

    RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.

    INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.

    Matched MeSH terms: Constipation/microbiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links