Displaying all 4 publications

Abstract:
Sort:
  1. Ang QY, Low SC
    Anal Bioanal Chem, 2015 Sep;407(22):6747-58.
    PMID: 26163132 DOI: 10.1007/s00216-015-8841-9
    Molecular imprinting is an emerging technique to create imprinted polymers that can be applied in affinity-based separation, in particular, biomimetic sensors. In this study, the matrix of siloxane bonds prepared from the polycondensation of hydrolyzed tetraethoxysilane (TEOS) was employed as the inorganic monomer for the formation of a creatinine (Cre)-based molecularly imprinted polymer (MIP). Doped aluminium ion (Al(3+)) was used as the functional cross-linker that generated Lewis acid sites in the confined silica matrix to interact with Cre via sharing of lone pair electrons. Surface morphologies and pore characteristics of the synthesized MIP were determined by field emission scanning electron microscopy (FESEM) and Brunauer-Emmet-Teller (BET) analyses, respectively. The imprinting efficiency of MIPs was then evaluated through the adsorption of Cre with regard to molar ratios of Al(3+). A Cre adsorption capacity of up to 17.40 mg Cre g(-1) MIP was obtained and adsorption selectivity of Cre to its analogues creatine (Cr) and N-hydroxysuccinimide (N-hyd) were found to be 3.90 ± 0.61 and 4.17 ± 3.09, respectively. Of all the studied MIP systems, chemisorption was predicted as the rate-limiting step in the binding of Cre. The pseudo-second-order chemical reaction kinetic provides the best correlation of the experimental data. Furthermore, the equilibrium adsorption capacity of MIP fit well with a Freundlich isotherm (R (2) = 0.98) in which the heterogeneous surface was defined.
    Matched MeSH terms: Creatinine/chemistry*
  2. Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, et al.
    ACS Appl Mater Interfaces, 2020 Jul 22;12(29):33276-33287.
    PMID: 32589391 DOI: 10.1021/acsami.0c08947
    The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
    Matched MeSH terms: Creatinine/chemistry*
  3. Ashraf MA, Islam A, Butt MA, Hussain T, Khan RU, Bashir S, et al.
    Int J Biol Macromol, 2021 Nov 30;191:872-880.
    PMID: 34571131 DOI: 10.1016/j.ijbiomac.2021.09.131
    Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
    Matched MeSH terms: Creatinine/chemistry
  4. Zaman SU, Saif-Ur-Rehman, Zaman MKU, Rafiq S, Arshad A, Khurram MS, et al.
    Artif Organs, 2021 Nov;45(11):1377-1390.
    PMID: 34152645 DOI: 10.1111/aor.14020
    In the current study, a phase inversion scheme was employed to fabricate hydroxyapatite (HA)/polysulfone (PSF)-based asymmetric membranes using a film applicator with water as a solvent and nonsolvent exchanging medium. Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) spectroscopic studies were conducted to confirm the bonding chemistry and purity of filler. The inherent thick nature of PSF generated sponge-like shape while the instantaneous demixing process produced finger-like pore networks in HA/PSF-based asymmetric membranes as exhibited by scanning electron microscope (SEM) micrographs. The FTIR spectra confirmed noncovalent weak attractions toward the polymer surface. The leaching ratio was evaluated to observe the dispersion behavior of HA filler in membrane composition. Hydrophilicity, pore profile, pure water permeation (PWP) flux, and molecular weight cutoff (MWCO) values of all formulated membranes were also calculated. Antifouling results revealed that HA modified PSF membranes exhibited 43% less adhesion of bovine serum albumin (BSA) together with >86% recovery of flux. Membrane composition showed 74% total resistance, out of which 60% was reversible resistance. Biocompatibility evaluation revealed that the modified membranes exhibited prothrombin time (PT), and thrombin time (TT) comparable with typical blood plasma, whereas proliferation of living cells over membrane surface proved its nontoxic behavior toward biomedical application. The urea and creatinine showed effective adsorption aptitude toward HA loaded PSF membranes.
    Matched MeSH terms: Creatinine/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links