Displaying all 7 publications

Abstract:
Sort:
  1. Nget Hong Tan, Chon Seng Tan
    Toxicon, 1988;26(11):989-96.
    PMID: 3245058
    The toxic and biological activities of four samples of Trimeresurus purpureomaculatus venom were examined. The lethality, protein composition and biological activities of the four venom samples were similar. Three of the venom samples had LD50 (i.v.) values of 0.9 micrograms/g while the fourth had a lower LD50 (i.v.) of 0.45 micrograms/g. All four venom samples exhibited hemorrhagic, edema-inducing, anticoagulant and thrombin-like activities as well as the usual enzymes found in crotalid venoms. DEAE-Sephacel ion exchange chromatographic fractionation of the venom yielded 10 protein fractions. Only two fractions (fractions A and F) were lethal to mice; the major lethal fraction being fraction F. This fraction had an LD50 (i.v.) of 0.2 micrograms/g and exhibited hemorrhagic, edema-inducing and thrombin-like activity. It also exhibited phospholipase A, arginine ester hydrolase, arginine amidase, protease, 5'-nucleotidase, acetylcholinesterase and alkaline phosphomonoesterase activities. The lethal potency of fraction F is potentiated by fraction G, which exhibited anticoagulant activity as well as hemorrhagic, edema-inducing and enzymatic activities. Fractions F plus G account for almost 100% of the lethal potency of the venom.
    Matched MeSH terms: Crotalid Venoms/pharmacology*
  2. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1991;100(2):361-5.
    PMID: 1799979
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms from 13 species of Bothrops were determined, and the Sephadex G-75 gel filtration patterns for some of the venoms also examined. 2. The results show that while there are considerable individual variations in the biological activities of many of the Bothrops venoms tested, there are some common characteristics at the genus and species levels. 3. The differences in the biological properties of the Bothrops venoms tested can be used for the differentiation of most Bothrops species examined.
    Matched MeSH terms: Crotalid Venoms/pharmacology
  3. Chan KE
    PMID: 524154
    Matched MeSH terms: Crotalid Venoms/pharmacology
  4. Tan NH, Ponnudurai G
    PMID: 1676959
    1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.
    Matched MeSH terms: Crotalid Venoms/pharmacology*
  5. Tan NH, Ponnudurai G
    Comp. Biochem. Physiol., B, 1990;95(3):577-82.
    PMID: 2158874
    1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 31 samples of venom from three species of Agkistrodon (A. bilineatus, A. contortrix and A. piscivorus) and 10 venom samples from five other related species belonging to the same tribe of Agkistrodontini were examined. 2. The results indicate that interspecific differences in certain biological activities of the Agkistrodon venoms are more marked than individual variations of the activities, and that these differences can be used for differentiation of the species. Particularly useful for this purpose are the phosphodiesterase, arginine ester hydrolase and anticoagulant activities of the venoms. 3. Venoms of the subspecies of A. contortrix and A. piscivorus do not differ significantly in their biological activities.
    Matched MeSH terms: Crotalid Venoms/pharmacology*
  6. Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ
    Arch Biochem Biophys, 2001 Mar 15;387(2):257-64.
    PMID: 11370849
    To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.
    Matched MeSH terms: Crotalid Venoms/pharmacology
  7. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Crotalid Venoms/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links