Displaying all 3 publications

Abstract:
Sort:
  1. Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH
    Toxicol. Sci., 2010 Aug;116(2):533-48.
    PMID: 20498002 DOI: 10.1093/toxsci/kfq151
    Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
    Matched MeSH terms: Cytochromes c/secretion
  2. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
    Matched MeSH terms: Cytochromes c/secretion*
  3. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Cytochromes c/secretion
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links