Displaying all 6 publications

Abstract:
Sort:
  1. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A
    Biomed Res Int, 2014;2014:872370.
    PMID: 25478576 DOI: 10.1155/2014/872370
    The influenza virus (IV) is known to be a resistant virus with frequent mutations, causing severe respiratory diseases in the upper respiratory system. Public health concerns about clinical efficacy of all conventional drugs are ambiguous; therefore, finding additional therapeutic agents is critical to prevent and control influenza outbreaks. Influenza is associated with the induction of proinflammatory cytokines. Scientists have reported that anti-inflammatory drugs, with pleiotropic effects, reduce the burden of severe influenza diseases. Therefore, statins, which are cardioprotective drugs with anti-inflammatory and immunomodulatory effects, may help patients suffering from influenza virus (IV). This review delineates the potential use of statins as an alternative therapy in treating influenza related illness.
    Matched MeSH terms: Cytokines/drug effects
  2. Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP
    Integr Cancer Ther, 2008 Sep;7(3):189-203.
    PMID: 18815150 DOI: 10.1177/1534735408322846
    Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.
    Matched MeSH terms: Cytokines/drug effects
  3. Sosroseno W
    Immunopharmacol Immunotoxicol, 2003 Feb;25(1):123-7.
    PMID: 12675204
    Spleen cells from saline- and Porphyromonas gingivalis-primed mice were cultured and stimulated with or without P. gingivalis and added with or without various concentration of sodium fluoride (NaF). Cell proliferation, antigen-specific IgG antibodies and both IFN-gamma and IL-10 levels were determined by a colorimetric assay, ELISA and commercial ELISA kits respectively. The results showed that NaF at concentration of 1 x 10(-6) M enhanced but at concentration of 1 x 10(-1) M abolished the immune response to P. gingivalis, suggesting that NaF at low concentration may act as an adjuvant but at high concentration may be toxic to the P. gingivalis-induced murine splenic immune response in vitro.
    Matched MeSH terms: Cytokines/drug effects
  4. Yang X, Guo G, Dang M, Yan L, Kang X, Jia K, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(3):229-238.
    PMID: 31679310 DOI: 10.1615/JEnvironPatholToxicolOncol.2019030154
    Asthma has affected more than 300 million people worldwide and is considered one of the most debilitating global public health problems based on a recent statistical report from the Global Initiative for Asthma. Inflammation of the airways leads to the various interrelated mechanisms of innate and adaptive immunity acting mutually with the epithelium of the respiratory organ. Fucoxanthin is an orange or brown pigment which is naturally found in various seaweeds. To the best of our knowledge, there are no scientific claims or evidence of the curative effects of fucoxanthin against asthma. Hence, this present research was designed to investigate the curative activity of fucoxanthin against ovalbumin-induced asthma in a mouse model. Fucoxanthin (50 mg/kg) showed significant (P < 0.001) antiasthma activity. It effectively decreased intracellular secretion of reactive oxygen species and increased antioxidant enzyme activity. Fucoxanthin also decreased inflammatory cytokine markers in bronchoalveolar lavage fluid. Because fucoxanthin showed effective antiasthma activity against ovalbumin-induced asthma in experimental animals, further research on this natural antioxidant could lead to development of a novel drug for the treatment of asthma in humans.
    Matched MeSH terms: Cytokines/drug effects
  5. Safi SZ, Batumalaie K, Mansor M, Chinna K, Mohan S, Karimian H, et al.
    Clinics (Sao Paulo), 2015 Aug;70(8):569-76.
    PMID: 26247670 DOI: 10.6061/clinics/2015(08)07
    The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells.
    Matched MeSH terms: Cytokines/drug effects
  6. Maha A, Cheong SK, Leong CF, Seow HF
    Malays J Pathol, 2009 Dec;31(2):81-91.
    PMID: 20514850 MyJurnal
    Signal transduction pathways are constitutively expressed in leukaemic cells resulting in aberrant survival of the cells. It is postulated that in cells of chemo-sensitive patients, chemotherapy induces apoptotic signals leading to cell death while survival signals are maintained in cells of chemo-resistant patients. There is very little information currently, on the expression of these mediators in patients immediately after chemotherapy initiation. We examined the expression pattern of proinflammatory cytokines, signaling molecules of the PI3K and MAPK pathways molecules and death receptor, DR5 on paired samples at diagnosis and during chemotherapy in acute myeloid leukaemia patients treated with cytosine arabinoside and daunorubicin. The results were correlated with remission status one month after chemotherapy. We found that in chemo-sensitive patients, chemotherapy significantly increased the percentage of cases expressing TNF-alpha (p = 0.025, n = 9) and IL-6 (p = 0.002, n = 11) compared to chemo-resistant cases. We also observed an increased percentage of chemo-sensitive cases expressing DR5 and phosphorylated p38, and Jnk. Thus, expression of TNF-alpha, IL-6, DR5, phospho-p38 and phospho-Jnk may regulate cell death in chemo-sensitive cases. In contrast, a significantly higher percentage of chemo-resistant cases expressed phospho-Bad (p = 0.027, n = 9). IL-beta and IL-18 were also found to be higher in chemo-resistant cases at diagnosis and during chemotherapy. Thus, expression of various cellular molecules in leukaemic blasts during chemotherapy may be useful in predicting treatment outcome. These cellular molecules may also be potential targets for alternative therapy.
    Matched MeSH terms: Cytokines/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links