Despite the implications for the development of life-history traits, endocrine-immune trade-offs in apes are not well studied. This is due, in part, to difficulty in sampling wild primates, and lack of methods available for immune measures using samples collected noninvasively. Evidence for androgen-mediated immune trade-offs in orangutans is virtually absent, and very little is known regarding their pattern of adrenal development and production of adrenal androgens. To remedy both of these deficiencies, sera were collected from orangutans (Pongo pygmaeus morio) (N = 38) at the Sepilok Orangutan Rehabilitation Centre, Sabah, Malaysia, during routine health screenings. Testosterone, dehydroepiandrosterone (DHEA), and dehydroepiandrosterone-sulfate (DHEA-S) were assayed, along with two measures of functional innate immunity. DHEA-S concentrations, but not DHEA, increased with age in this sample of 1-18 year old animals. DHEA concentrations were higher in animals with higher levels of serum bacteria killing ability, while DHEA-S and testosterone concentrations were higher in animals with reduced complement protein activity. Patterns of DHEA-S concentration in this sample are consistent with patterns of adrenarche observed in other apes. Results from this study suggest that in addition to testosterone, DHEA and DHEA-S may have potent effects on immunological activity in this species.
This study aimed to investigate the metabolite differences between patients with keratoconus and control subjects and identify potential serum biomarkers for keratoconus using a non-targeted metabolomics approach. Venous blood samples were obtained from patients with keratoconus (n = 20) as well as from age-, gender- and race-matched control subjects (n = 20). Metabolites extracted from serum were separated and analyzed by liquid chromatography/quadrupole time-of-flight mass spectrometer. Processing of raw data and analysis of the data files was performed using Agilent Mass Hunter Qualitative software. The identified metabolites were subjected to a principal component and hierarchical cluster analysis. Appropriate statistical tests were used to analyze the metabolomic profiling data. Together, the analysis revealed that the dehydroepiandrosterone sulfate from the steroidal hormone synthesis pathway was significantly upregulated in patients with keratoconus (p