Dental stem cells isolated for human dental pulp are an excellent source for regenerative medicine and dentistry. Simulation of clinical scenario is one of the crucial challenges for evaluation of the efficacy of DPSCs in various regenerative therapies. In this study we evaluated the viability of DPSCs after treatment with artificial bacterial lipopolysaccharides (LPS) as the main component responsible for inducing inflammatory response in majority of the inflammatory conditions in clinical scenario. Although a number of studies have previously treated stem cells with LPS from bacteria, however the accuracy level of the outcome was not established. Here we have analyzed the outcome using adaptive neuro-fuzzy inferences system (ANFIS) to predict the viability of human DPSCs after treatment with bacterial LPS.
Calcium phosphate (CaP) scaffolds have been widely and successfully used with osteoblast cells for bone tissue regeneration. However, it is necessary to investigate the effects of these scaffolds on odontoblast cells' proliferation and differentiation for dentin tissue regeneration. In this study, three different hydroxyapatite (HA) to beta tricalcium phosphate (β-TCP) ratios of biphasic calcium phosphate (BCP) scaffolds, BCP20, BCP50, and BCP80, with a mean pore size of 300μm and 65% porosity were prepared from phosphoric acid (H2PO4) and calcium carbonate (CaCO3) sintered at 1000°C for 2h. The extracts of these scaffolds were assessed with regard to cell viability and differentiation of odontoblasts. The high alkalinity, more calcium, and phosphate ions released that were exhibited by BCP20 decreased the viability of human dental pulp cells (HDPCs) as compared to BCP50 and BCP80. However, the cells cultured with BCP20 extract expressed high alkaline phosphatase activity and high expression level of bone sialoprotein (BSP), dental matrix protein-1 (DMP-1), and dentin sialophosphoprotein (DSPP) genes as compared to that cultured with BCP50 and BCP80 extracts. The results highlighted the effect of different scaffold ratios on the cell microenvironment and demonstrated that BCP20 scaffold can support HDPC differentiation for dentin tissue regeneration.