Displaying all 3 publications

Abstract:
Sort:
  1. Liu F, Wang S, Liu B, Wang Y, Tan W
    Cells, 2020 02 24;9(2).
    PMID: 32102363 DOI: 10.3390/cells9020511
    Psoriasis is a skin disease that is characterized by a high degree of inflammation caused by immune dysfunction. (R)-salbutamol is a bronchodilator for asthma and was reported to alleviate immune system reactions in several diseases. In this study, using imiquimod (IMQ)-induced mouse psoriasis-like dermatitis model, we evaluated the therapeutic effects of (R)-salbutamol in psoriasis in vivo, and explored the metabolic pathway involved. The results showed that, compared with IMQ group, (R)-salbutamol treatment significantly ameliorated psoriasis, reversed the suppressive effects of IMQ on differentiation, extreme keratinocyte proliferation, and infiltration of inflammatory cells. Enzyme-linked immunosorbent assays (ELISA) showed that (R)-salbutamol markedly reduced the plasma levels of IL-17. Cell analysis using flow cytometry showed that (R)-salbutamol decreased the proportion of CD4+ Th17+ T cells (Th17), whereas it increased the percentage of CD25+ Foxp3+ regulatory T cells (Tregs) in the spleens. (R)-salbutamol also decreased the weight ratio of spleen to body. Furthermore, untargeted metabolomics showed that (R)-salbutamol affected three metabolic pathways, including (i) arachidonic acid metabolism, (ii) sphingolipid metabolism, and (iii) glycerophospholipid metabolism. These results demonstrated that (R)-salbutamol can alleviate IMQ-induced psoriasis through regulating Th17/Tregs cell response and glycerophospholipid metabolism. It may provide a new use of (R)-salbutamol in the management of psoriasis.
    Matched MeSH terms: Dermatitis, Atopic/chemically induced*
  2. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E, Sahudin S
    Int J Nanomedicine, 2014;9:5143-56.
    PMID: 25395851 DOI: 10.2147/IJN.S71543
    Atopic dermatitis is a chronic, noncontiguous, and exudative disorder accompanied by perivascular infiltration of immune mediators, including T-helper (Type 1 helper/Type 2 helper) cells, mast cells, and immunoglobulin E. The current study explores the immunomodulatory and histological effects of nanoparticle (NP)-based transcutaneous delivery of hydrocortisone (HC).
    Matched MeSH terms: Dermatitis, Atopic/chemically induced
  3. Hussain Z, Katas H, Mohd Amin MC, Kumolosasi E
    PLoS One, 2014;9(11):e113143.
    PMID: 25396426 DOI: 10.1371/journal.pone.0113143
    The present study was conducted with the aim to investigate the immuno-modulatory and histological stabilization effects of nanocarrier-based transcutaneous co-delivery of hydrocortisone (HC) and hydroxytyrosol (HT). In this investigation, the clinical and pharmacological efficacies of nanoparticle (NP)-based formulation to alleviate 2,4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis (AD) was explored by using an NC/Nga mouse model. Ex vivo visual examination of AD induction in experimental mice indicated remarkable control of NP-based formulations in reducing pathological severity of AD-like skin lesions. Therapeutic effectiveness of NP-based formulations was also evaluated by comparing skin thickness of AD-induced NP-treated mice (456±27 µm) with that of atopic mice (916±37 µm). Analysis of the immuno-spectrum of AD also revealed the dominance of NP-based formulations in restraining immunoglobulin-E (IgE), histamine, prostaglandin-E2 (PGE2), vascular endothelial growth factor-α (VEGF-α), and T-helper cells (TH1/TH2) producing cytokines in serum and skin biopsies of tested mice. These anti-AD data were further supported by histological findings that revealed alleviated pathological features, including collagen fiber deposition, fibroblasts infiltration, and fragmentation of elastic fibers in experimental mice. Thus, NP-mediated transcutaneous co-delivery of HC and HT can be considered as a promising therapy for managing immunological and histological spectra associated with AD.
    Matched MeSH terms: Dermatitis, Atopic/chemically induced
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links