Displaying all 6 publications

Abstract:
Sort:
  1. Ismail NA, Kasim MM, Noor Aizuddin A, Umar NA
    Gynecol Endocrinol, 2013 Jul;29(7):691-4.
    PMID: 23772780 DOI: 10.3109/09513590.2013.797398
    OBJECTIVE: This was to determine HOMA-IR score as well as to assess its association in fetal and maternal outcomes among pregnant women with diabetes risks.
    METHODS: A prospective cohort study of pregnant women with diabetes risks was done. GDM was diagnosed using modified glucose tolerance test. Serum insulin was taken and measured by an electrochemiluminescence immunoassay method. Plasma glucose was measured by enzymatic reference method with hexokinase. HOMA-IR score was calculated for each patient. Maternal and fetal outcomes were analyzed.
    RESULTS: From 279 women recruited, 22.6% had GDM with higher HOMA-IR score (4.07 ± 2.44 versus 2.08 ± 1.12; p = 0.001) and fasting insulin (16.76 ± 8.63 µIU/L versus 10.15 ± 5.07 µIU/L; p = 0.001). Area under ROC curve for HOMA-IR score was 0.79 (95% confidence interval, 0.74-0.84) with optimum cut-off value of 2.92 (sensitivity = 63.5%; specificity = 89.8%), higher than recommended by IDF (2.38). This point showed significant association with neonatal hypoglycemia (p = 0.02) and Cesarean section (p = 0.04) in GDM mothers.
    CONCLUSIONS: HOMA-IR score and insulin resistance levels were higher in GDM women in our population. With the cut-off HOMA-IR value of 2.92, neonatal hypoglycemia and Cesarean section were significant complications in GDM mothers. This can be used in anticipation of maternal and fetal morbidities.
    Matched MeSH terms: Diabetes, Gestational/metabolism
  2. Hong JGS, Tan PC, Kamarudin M, Omar SZ
    BMC Pregnancy Childbirth, 2021 Feb 15;21(1):138.
    PMID: 33588801 DOI: 10.1186/s12884-021-03628-5
    BACKGROUND: Antenatal corticosteroids (ACS) are increasingly used to improve prematurity-related neonatal outcome. A recognized and common adverse effect from administration of antenatal corticosteroid is maternal hyperglycemia. Even normal pregnancy is characterized by relative insulin resistance and glucose intolerance. Treatment of maternal hyperglycemia after ACS might be indicated due to the higher risk of neonatal acidosis which may coincide with premature birth. Metformin is increasingly used to manage diabetes mellitus during pregnancy as it is effective and more patient friendly. There is no data on prophylactic metformin to maintain euglycemia following antenatal corticosteroids administration.

    METHODS: A double blind randomized trial. 103 women scheduled to receive two doses of 12-mg intramuscular dexamethasone 12-hour apart were separately randomized to take prophylactic metformin or placebo after stratification according to their gestational diabetes (GDM) status. First oral dose of allocated study drug was taken at enrolment and continued 500 mg twice daily for 72 hours if not delivered. Six-point blood sugar profiles were obtained each day (pre- and two-hour post breakfast, lunch and dinner) for up to three consecutive days. A hyperglycemic episode is defined as capillary glucose fasting/pre-meal ≥ 5.3 mmol/L or two-hour post prandial/meal ≥ 6.7 mmol/L. Primary outcome was hyperglycemic episodes on Day-1 (first six blood sugar profile points) following antenatal corticosteroids.

    RESULTS: Number of hyperglycemic episodes on the first day were not significantly different (mean ± standard deviation) 3.9 ± 1.4 (metformin) vs. 4.1 ± 1.6 (placebo) p = 0.64. Hyperglycemic episodes markedly reduced on second day in both arms to 0.9 ± 1.0 (metformin) vs. 1.2 ± 1.0 (placebo) p = 0.15 and further reduced to 0.6 ± 1.0 (metformin) vs. 0.7 ± 1.0 (placebo) p = 0.67 on third day. Hypoglycemic episodes during the 3-day study period were few and all other secondary outcomes were not significantly different.

    CONCLUSIONS: In euglycemic and diet controllable gestational diabetes mellitus women, antenatal corticosteroids cause sustained maternal hyperglycemia only on Day-1. The magnitude of Day-1 hyperglycemia is generally low. Prophylactic metformin does not reduce antenatal corticosteroids' hyperglycemic effect.

    TRIAL REGISTRATION: The trial is registered in the ISRCTN registry on May 4 2017 with trial identifier https://doi.org/10.1186/ISRCTN10156101 .

    Matched MeSH terms: Diabetes, Gestational/metabolism
  3. Hayati AR, Cheah FC, Tan AE, Tan GC
    Early Hum Dev, 2007 Jan;83(1):41-6.
    PMID: 16750336 DOI: 10.1016/j.earlhumdev.2006.04.002
    BACKGROUND: Septal hypertrophic cardiomyopathy (sHCM) is a characteristic anomaly of the infant of diabetic mother (IDM). Insulin-like growth factor-1 (IGF-1) has been identified as a mediator of tissue overgrowth and we have previously shown that maternal IGF-1 levels were significantly elevated among neonates with asymmetrical sHCM. IGF-1 does not cross the placenta; it exerts physiologic action through binding to the IGF-1 receptor (IGF-1R). Localisation and expression of IGF-1R in term diabetic pregnancies are largely unclear. We have studied IGF-1R in the placentae of diabetic and normal pregnancies and this receptor expression in association with neonates with sHCM.
    METHODS: IGF-1R localization and expression in the placentae of six diabetic pregnancies associated with neonatal sHCM were compared with six each of randomly selected diabetic and normal pregnancies without neonatal sHCM by immunohistochemistry. The staining for IGF-1R in the deciduas, cytotrophoblasts, syncytiotrophoblasts and villous endothelium for these 18 samples were assessed and scored by two pathologists who were blinded to the respective diagnoses.
    RESULTS: Placental IGF-1R staining was negative in the villous endothelium for all three groups. IGF-1R staining was present in deciduas, cytotrophoblasts and syncytiotrophoblasts but the staining was weaker in the entire group of infants with sHCM compared to those without sHCM.
    CONCLUSIONS: IGF-1R is localized in all cell types of the placenta except in villous endothelium. Weaker placental IGF-1R staining in the placentae of diabetic pregnancies associated with sHCM suggests reduced expression of IGF-1R. This may be a down-regulatory response to elevated maternal IGF with neonatal sHCM outcome.
    Matched MeSH terms: Diabetes, Gestational/metabolism*
  4. Mosavat M, Omar SZ, Jamalpour S, Tan PC
    J Diabetes Res, 2020;2020:9072492.
    PMID: 32090124 DOI: 10.1155/2020/9072492
    Background: Defects in incretin have been shown to be related to the pathogenesis of type 2 diabetes. Whether such a deficiency happens in gestational diabetes mellitus (GDM) remains to be confirmed. We assessed the association of fasting glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) with GDM. We also studied the longitudinal circulation of these peptides during pregnancy and afterwards.

    Methods: 53 women with GDM (30 managed with diet only (GDM-diet) and 23 treated with insulin (GDM-insulin)) and 43 pregnant women with normal glucose tolerance (NGDM) were studied, with GIP and GLP-1 levels measured at 24-28 weeks (E1), prior (E2) and after (E3) delivery, and postpuerperium (E4).

    Results: Basal GIP was shown to be low in GDM groups compared to NGDM in E1, and in E4 for GDM-diet. GLP-1 was low in GDM groups during pregnancy and afterwards. At E1, serum GIP and GLP-1 were inversely associated with GDM and participants with lower levels of GIP (<0.23 ng/mL) and GLP-1 (<0.38 ng/mL) had a 6 (95% CI 2.5-14.5)- and 7.6 (95% CI 3.0-19.1)-fold higher risk of developing GDM compared with the higher level, respectively. In the postpuerperium, when there is a drop in β-cell function, participants with previous GDM (pGDM) presented lower GLP-1 (in both GDM subgroups) and lower GIP in GDM-diet subgroup compared to controls.

    Conclusion: There is an independent, inverse association between fasting incretins and higher risk of GDM. Furthermore, lowered levels of these peptides may play an important role in the abnormality of glucose regulation following pregnancy.

    Matched MeSH terms: Diabetes, Gestational/metabolism
  5. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A
    Curr Med Chem, 2012;19(30):5181-6.
    PMID: 23237188
    Gestational diabetes (GD) is a common complication during pregnancy. Metabolic changes in GD affect fetal development and fetal glucose homeostasis. The present study utilized a rat model of GD to evaluate the effects of nicotinamide on diabetic parameters; antioxidant gene expression viz, superoxide dismutase (SOD) and catalase (CAT); reactive oxygen species (ROS) production by neutrophils and enhancement of lymphocyte mediated immune response. Nicotinamide (50, 100 and 200 mg/kg) was orally supplemented to gestational diabetic rats from days 6 through 20 of gestation. After GD induction, the control group had elevated glucose and reduced insulin while nicotinamide (100 & 200 mg/kg) supplementation reversed these changes. The same doses of nicotinamide upregulated mRNA expressions of SOD and CAT genes in liver but reduced the oxidative burst activity of neutrophils in response to phorbol myristate acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (FMLP) or E. coli activation. Nicotinamide (100 & 200 mg/kg) supplementation also increased expression of activated T helper (CD4+CD25+) cells and induced proliferation of splenocytes. These findings provide evidence for utilizing nicotinamide as supplement or adjunct to support existing therapeutic agents for gestational diabetes and in pregnant individuals with weakened immune systems.
    Matched MeSH terms: Diabetes, Gestational/metabolism
  6. Razak AA, Leach L, Ralevic V
    Diab Vasc Dis Res, 2018 11;15(6):528-540.
    PMID: 30130976 DOI: 10.1177/1479164118790904
    BACKGROUND: There is clinical and experimental evidence for altered adenosine signalling in the fetoplacental circulation in pregnancies complicated by diabetes, leading to adenosine accumulation in the placenta. However, the consequence for fetoplacental vasocontractility is unclear. This study examined contractility to adenosine of chorionic vessels from type 1 diabetes mellitus, gestational diabetes mellitus and normal pregnancies.

    METHODS: Chorionic arteries and veins were isolated from human placenta from normal, gestational diabetes mellitus and type 1 diabetes mellitus pregnancies. Isometric tension recording measured responses to adenosine and the thromboxane A2 analogue U46619 (thromboxane A2 mediates fetoplacental vasoconstriction to adenosine). Adenosine and thromboxane prostanoid receptor protein expression was determined by immunoblotting.

    RESULTS: Adenosine elicited contractions in chorionic arteries and veins which were impaired in both gestational diabetes mellitus and type 1 diabetes mellitus. Contractions to potassium chloride were unchanged. Adenosine A2A and A2B receptor protein levels were not different in gestational diabetes mellitus and normal pregnancies. Contractions to U46619 were unaltered in gestational diabetes mellitus arteries and increased in type 1 diabetes mellitus arteries. Overnight storage of vessels restored contractility to adenosine in gestational diabetes mellitus arteries and normalized contraction to U46619 in type 1 diabetes mellitus arteries.

    CONCLUSION: These data are consistent with the concept of aberrant adenosine signalling in diabetes; they show for the first time that this involves impaired adenosine contractility of the fetoplacental vasculature.

    Matched MeSH terms: Diabetes, Gestational/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links